Worksheet 4
The Exponential Map

Recall that
\[e^t := 1 + t + \frac{1}{2!} t^2 + \frac{1}{3!} t^3 + \frac{1}{4!} t^4 + \cdots \]
\[\cos(t) := 1 - \frac{1}{2!} t^2 + \frac{1}{4!} t^4 - \frac{1}{6!} t^6 + \cdots \]
\[\sin(t) := t - \frac{1}{3!} t^3 + \frac{1}{5!} t^5 - \frac{1}{7!} t^7 + \cdots \]

1. Prove Euler’s formula:
\[e^{it} = \cos(t) + i \sin(t) \]

Notice that, by taking \(t = \pi \), we obtain the famous expression
\[e^{i\pi} + 1 = 0 \]

Recall that the zero map \(0 \in \text{Lin}(V) \) and identity map \(I \in \text{Lin}(V) \) are given by
\[0(x) = 0 \]
\[I(x) = x \]

for all \(x \in V \). Since
\[I^2(x) := I(I(x)) = I(x) = x \]

for any \(x \in V \), it follows that \(I^2 \) is the identity map. That is, \(I^2 = I \).

2. What is \(I^{500} \)? \(0^{27} \)?

3. Compute \(e^{i0} \).

4. Compute \(e^{it} \). (Hint. Factor out an \(I \) and use the definition of the function \(e^t \) given above.)

5. Show that the matrix
\[\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \]

corresponds to the zero transformation on \(\mathbb{R}^2 \). That is, you must show that it sends every column vector to the zero vector \(\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbb{R}^2 \).

6. Show that the matrix
\[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

corresponds to the identity transformation on \(\mathbb{R}^2 \).
Define

\[Q = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \]

7. Find an expression for

\[e^{tQ} := I + tQ + \frac{1}{2!} t^2 Q^2 + \frac{1}{3!} t^3 Q^3 + \frac{1}{4!} t^4 Q^4 + \cdots \]

in terms of \(\sin(t) \) and \(\cos(t) \).

(Hint. Find a pattern in the powers \(Q^k \) of \(Q \), then use the definitions of
\(\text{sine and cosine.} \))

Let \(a, b \in \mathbb{R} \) be real numbers, and let

\[M = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \]

and

\[N = \begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix} \]

8. Compute the exponential \(e^{tM} \).

9. (Slightly more difficult.) Compute \(e^{tN} \).

Let \(A, B \in \text{Lin}(V) \) and suppose that \(B \) has an inverse \(B^{-1} \in \text{Lin}(V) \),

\[BB^{-1} = B^{-1}B = I \]

9. Show that

\[e^{B^{-1}AB} = B^{-1}e^A B \]

(Hint. Notice that \((B^{-1}AB)^2 = B^{-1}AB B^{-1}AB = B^{-1}A^2B \). What is \((B^{-1}AB)^{200} \) ?)