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Adaptive Mesh Refinement for Micromagnetics
Simulations

Carlos J. Garcı́a-Cervera, and Alexandre M. Roma

Abstract— We present a methodology to perform ef-
ficiently micromagnetics simulations which combines an
unconditionally stable, finite differences scheme with an
adaptive mesh refinement technique. Enhanced accuracy
is attained by covering locally special regions of the domain
with a sequence of nested, progressively finer rectangular
grid patches which dynamically follow sharp transitions
of the magnetization field (e.g., walls and vortices). To
illustrate our approach, we consider a rectangular sample
of infinite thickness with strong anisotropy in the out-of-
plane direction.

Index Terms— Landau-Lifshitz-Gilbert, Multilevel-
multigrid, Finite Differences, Adaptive Mesh Refinement

I. INTRODUCTION

UNDERSTANDING the mechanisms of magnetiza-
tion reversal in ferromagnetic samples of nano-

scale size is of interest in the study of the magnetic
recording process, in particular in computer disks and
in computer memory cells, such as MRAMs [1], [2].

The relaxation process of the magnetization distri-
bution in a ferromagnetic material is described by the
Landau-Lifshitz-Gilbert equation (LLG) equation [3],
[4],

Mt = −γM × B −
γα

Ms
M × (M × B) , (1)

where |M| = Ms is the saturation magnetization which,
far from the Curie temperature, is usually set to be a
constant; the first and second terms are the gyromagnetic
and the damping terms, respectively, with γ being the
gyromagnetic ratio, and α the dimensionless damping
coefficient; B is the effective field

B = −
1

Ms
∇uΦ

(

M

Ms

)

+
Cex

M2
s

∆M + µ0 (Hs + H0) .

(2)
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In (2), Φ(u) represents the anisotropy energy per unit
volume. The parameters Cex and µ0 are the exchange
constant and permeability of vacuum, respectively. Hs

is the stray field, and H0 is the external field.
Typically, the magnetization profile in a ferromagnetic

sample displays large domains where the magnetization
is slowly varying. These domains are usually of the
order of a few hundreds of nanometers in size, and
are separated by magnetic walls, and magnetic vortices.
The core size of these sharp transition regions is of the
order of a few nanometers. Most experimental studies
coincide that the presence of magnetization vortices
inside a ferromagnetic sample has a dramatic effect in the
magnetization reversal process [5], [6], [7], [8], [9]. In
addition, the reversal process occurs as a consequence
of domain wall motion. In order to carry out realistic
micromagnetics simulations, it is therefore necessary
to resolve numerically a broad range of length scales,
spanning from the nanometer size magnetic walls and
vortices to the macroscopic size of magnetic memories
and hard drives. Moreover, the overall accuracy of the
numerical simulation depends strongly on how well these
local phenomena are resolved [10].

Fully resolved three dimensional simulations that use
a uniform grid may result too costly for currently avail-
able computer resources. To increase the computational
efficiency, and to allow for complex problems to be
tackled, reductions in the processing time and in the
computer memory consumption are desirable. These
reductions can be achieved by adaptively refining the
spatial mesh locally around walls and vortices, while
resolving magnetic domains with a coarser grid.

In micromagnetics simulations, the adaptivity has usu-
ally been achieved by employing adaptive refinement
finite element methods [11], [12], [13], or by employing
methods based on a moving mesh [14], [15], [16].

Adaptive finite elements started to be applied to sev-
eral problems in micromagnetics in the nineties. Among
those are the simulations of longitudinal thin film media
[11], domain structures in soft magnetic thin films [12],
and domain wall motion in permanent magnets [13], to
name a few. Arbitrarily shaped domains can be handled
naturally by finite element discretizations. Due to the
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way information is stored and retrieved at nodal points,
the mesh adaptivity may impose a relatively heavy com-
putational overhead when compared to the processing
time taken by the overall method, especially if remeshing
must be performed frequently.

In the moving mesh method, a mapping between a
uniform logical mesh and the physical mesh is defined.
The physical mesh deforms from one time step to the
next in order to accommodate the underlying structure of
the solution. The new mapping may be obtained either
by an optimization procedure [17], or dynamically, as
in [18]. This methodology has been employed in the
study of singularity formation in different contexts [19],
[18]. In this procedure, the equations on the physical
grid are rewritten on the logical grid. This gives rise
to a differential equation with non-constant coefficients.
In the context of micromagnetics, this may complicate
considerably the stray field computation.

Here, we introduce another strategy for adaptive mi-
cromagnetics simulations which combines the Gauss-
Seidel Projection Method (GSPM) [10], [20] with an
adaptive mesh refinement (AMR) technique. The GSPM
is an unconditionally stable scheme for micromagnetics
simulations whose complexity is comparable to that of
solving the linear heat equation with the Backward Euler
Method. The AMR technique employed is based on the
works of Berger and Collela [21], for solving hyperbolic
equations on rectangular grids, and Berger and Rigoutsos
[22], for point clustering and mesh generation. Enhanced
accuracy is attained by covering certain regions of the
domain with a sequence of nested, progressively finer
rectangular grid patches which dynamically follow spe-
cial features of the solution (e.g., sharp property tran-
sitions). Since the convergence properties of the GSPM
are well understood on rectangular grids, this refinement
technique seems to be particularly appealing. Moreover,
rectangular grids have a simple user interface and, by
separating the integration method from the adaptive
strategy, we can use the GSPM on fine and coarse grids
without modification.

By combining the GSPM with the AMR, we obtain
an unconditionally stable, adaptive method for the sim-
ulation of the LLG equation on rectangular domains,
with optimal asymptotic complexity. Second-order finite
differences for spatial approximations are employed and
only the solution of Poisson-type equations with constant
coefficients are required. Although we only consider
a rectangular sample, arbitrarily shaped domains can
be handled efficiently by carefully adding boundary
corrections to the exchange and stray fields [23].

For the reasons above, the AMR-GSPM is an attractive
alternative approach to both adaptive finite elements

and moving mesh methods. We illustrate our approach
by finding the steady state of the magnetization in a
rectangular sample of infinite thickness, with strong
anisotropy in the out-of-plane direction, and for which a
large number of complex, transient structures develop.

II. MICROMAGNETICS SIMULATIONS

The Landau-Lifshitz-Gilbert equation (1) is solved
employing the Gauss-Seidel Projection Method [10],
[20]. Only linear systems of the form

(I − ∆t ∆)M = f (3)

must be solved. By carefully introducing the nonlinearity
a posteriori, an unconditionally stable finite differences
method for the LLG equation is obtained, and we may
employ time steps on the order of 1 picosecond, even in
the presence of thermal agitations [20].

The stray field can be written as Hs = −∇U , where U
is the magnetostatic potential. U solves the magnetostatic
equation

∆U = div M, x ∈ V

∆U = 0, x ∈ V
c

[U ] = 0, x ∈ ∂V
[

∂U

∂ν

]

= −M · ν, x ∈ ∂V, (4)

where V is the volume occupied by the sample, and
[•] represents the jump at the material/vacuum interface.
Equation (4) must be solved in the whole space. This
requires the introduction of far field boundary conditions.
In order to avoid this, we decompose the potential into
two parts: U = v +w. The function w satisfies equation

∆w = div M, x ∈ V,

w = 0, x ∈ ∂V, (5)

and it contains the bulk contribution of div M to the
stray field. The function w is extended to be equal to
zero outside V .

The boundary contributions are included in v, which
satisfies equation

∆v = 0, x ∈ V ∪ V
c
,

[v] = 0, x ∈ ∂V,
[

∂v

∂ν

]

= −M · ν +
∂w

∂ν
, x ∈ ∂V. (6)

The solution to (6) is

v(x) =

∫

∂V

N(x − y)g(y) dσ(y), (7)

where g(y) = −M · ν + ∂w
∂ν

, and N is the Newtonian
potential in free space. Formula (7) can be used to



IEEE TRANSACTIONS ON MAGNETICS, 2005 3

evaluate v on the boundary of the domain, and therefore
v can be determined inside the domain solving equa-
tion (6) with Dirichlet boundary data. This approach
is similar to the hybrid method introduced by Fredkin
and Koehler [24]. Our approach differs in that we use
Dirichlet boundary conditions instead of the Neumann
boundary conditions considered in [24], which changes
the integral representation of the boundary contribution
from a double layer potential, to the single layer potential
(7). The single layer potential is less singular than
the double layer potential, and thus can be handled
numerically more easily.

We approximate integral (7) on the boundary of the
domain by approximating g using piece-wise polyno-
mial interpolation. The corresponding moments of the
Newtonian potential can be evaluated analytically. In
two dimensions, the resulting sum can be evaluated
in O(N) operations by direct summation, where N is
the total number of grid points in the domain, if a
uniform grid was used. In three dimensions, however, the
evaluation of the boundary values by direct summation
is an O(N

4

3 ) operation. Solving Poisson’s equation with
Multigrid [25] is an O(N) operation. Therefore, in two
dimensions our procedure has optimal complexity. In
three dimensions, the evaluation of the boundary values
by direct summation dominates the CPU time. The
computational time can be further reduced using a fast
summation technique [26], [27]. Results in this direction
will be presented elsewhere.

III. ADAPTIVE MESH REFINEMENT

In our approach, the ferromagnetic sample is covered
by composite grids, that is, by block-structured grids, de-
fined as a hierarchical sequence of nested, progressively
finer levels. Each level is formed by a set of disjoint
rectangular grids and the refinement ratio between a level
and the next finer level is two. The magnetization is
defined at the center of the computational cells. Ghost
cells are employed around each grid, for all levels,
and underneath fine grid patches to formally prevent
the finite differences operators from being redefined at
grid borders and at interior regions which are covered
by finer levels. We use second- or third-order accuracy
interpolation schemes to provide values at these cells.
The description of the composite grids is given in [21]
in greater detail. In Fig. 1, we show an interface between
two successive refinement levels, and the location of
coarse and fine variables.

The use of an unconditionally stable time stepping
procedure such as the GSPM allows us to evolve the
solution on all grids, and in all levels, with the same time
step. The complexity of the GSPM is comparable to that

(i,j)

(i,j+1) (i+1,j+1)

(i+1,j)

(I,J)

Fig. 1. Ghost cells near the interface.

of solving a linear heat equation using Backward Euler.
Equations (3), (5), and (6) are solved using a multilevel-
multigrid method [28], [29].

A. Composite Grid Generation and Remeshing

Composite grid generation depends on the flagging
step, that is, determining first the cells whose collection
gives the region where refinement is to be applied. We
mark for refinement the cells at which the absolute value
of the in-plane divergence of the magnetization field is
at least 10% of its global maximum, that is, if

|∇ ·
(

M1(xij), M2(xij), 0)| ≥

0.10 max
rs

{ |∇ ·
(

M1(xrs), M2(xrs), 0)| }. (8)

Also, it is convenient to mark for refinement a layer of
cells close to the boundary of the domain. This way, we
are able to compute the boundary integral given by (7)
with the accuracy of the finest level.

Other criteria that can be employed for marking cells
for refinement, either simultaneously or separately, are
the norm of the gradient of the angle formed by the two
in-plane components, and the norm of the rotational of
the field, ||∇ × M||.

Once the collection of flagged cells is obtained, grids
in each level are generated by applying the algorithm for
point clustering proposed by Berger and Rigoutsos [22].
We require that, at least, from 70% to 85% of the cells in
each grid patch were flagged (grid efficiency). The rest
of the cells are included so the grid patch is rectangular.

Remeshing is performed in two situations: 1) when-
ever high in-plane divergence values escape from the
region covered by the finest level, and 2) at every certain
number of fixed time steps (e.g., at every 50 time steps)
in order to refresh the composite grid; otherwise, com-
posite grids generated with finest levels covering a large
portion of the domain would tend to stay permanently
in use, and the integration would become inefficient.
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IV. RESULTS

To illustrate the proposed methodology, we consider
a rectangular cylinder of infinite thickness parallel to
the OZ-axis, with strong anisotropy in the out-of-plane
direction. The Landau-Lifshitz energy per unit length
becomes

F [M] =
Ku

2M2
s

∫

V

M2
3 dx +

Cex

2M2
s

∫

V

|∇M|2 dx

−
µ0

2

∫

V

(Hs + 2H0) · M dx, (9)

where Ku is the anisotropy constant, and V is a rectangle
in the XY -plane. The effective field reduces to

B = −
Ku

M2
s

M3e3 +
Cex

M2
s

∆M + µ0 (Hs + H0) , (10)

where e3 = (0, 0, 1). The stray field is computed solving
equation (4) in two dimensions.

The rectangular domain has dimensions
1µm × 250 nm. We choose the exchange constant
and saturation magnetization to mimic Permalloy
(Cex = 1.3 × 10−11J/m, Ms = 8 × 105A/m). The
anisotropy constant is chosen such that Ku = µ0M

2
s ,

in order to impose a high penalty on the out-of-
plane component of the magnetization. The damping
parameter was set to α = 10−2.

Our motivation to study this problem is twofold. On
the one hand, the energy (9) resembles the energy of
a thin ferromagnetic film, where the shape anisotropy
penalizes out-of-plane excursions of the magnetization,
and the leading term in the in-plane components of the
stray field is given by a logarithmic convolution kernel
[30], [31], [32]. On the other hand, the geometric setting
and the parameters considered here allow us to reduce
the problem to a two dimensional computation, which
simplifies the evaluation of the stray field. Despite this
reduction, the minimizers of energy (9) show complex
domain structures, with magnetic walls and vortices,
making this an ideal test problem for the numerical
method presented here.

The domain is discretized employing four levels. Level
1 (the base level) is a uniform grid given by 128×32
cells, on top of which we add three refinement levels.
A uniform grid would require 1024×256 cells (that is,
262,144 cells) to have its resolution equivalent to the
finest level.

The solution is evolved in time until no visible dif-
ference in the magnetization field between successive
time steps is noticeable. The final time is 1.5 nanosec-
onds, reached in 1,500 time steps. At steady state, the
magnetization distribution develops the diamond domain
structure depicted in Fig. 2. A sketch of this structure is

presented in Fig. 3. The arrows show the direction of the
in-plane components of the magnetization. Lengths are
measured in units of L = 1µm.

Fig. 2. Diamond domain structure. We present a (color) plot of the
angle that the in-plane components of the magnetization form with
the OX-axis.

Fig. 3. Sketch of the diamond domain structure. The arrows indicate
the direction of the in-plane components of the magnetization.

Employing the divergence of the in-plane components
(see Section III-A), and the distance to the boundary
of the domain as the flagging criteria, 118 composite
grids are generated in the 1,500 time steps. The number
of cells in the composite grids, summing over all the
levels, ranged from about 51 × 103 to about 213 × 103,
the finest level covering from about 11% to about 53%
of the domain. In average, the finest level covered only
25% of the domain (6% standard deviation).

Typical grid patches and the corresponding grid cells
employed close to the steady state solution are shown in
Fig. (4) and (5), respectively. Only the region near one of
the vortices is plotted. The composite grid dynamically
adapts itself to the underlying structure of the magneti-
zation and concentrates grid points on the domain walls,
vortices, and on the boundary of the domain.

To illustrate how the grid patches adapt to the under-
lying structure of the magnetization, we present different
stages in the evolution of the magnetization in Fig. (6)
and Fig. (7). Both the magnetization and the correspond-
ing grid patches are plotted. The large number of small
structures that arise during the time evolution makes this
a good test problem for the procedure presented here.

In Fig. 8, we show the third component of the magne-
tization at steady state, computed using 128 × 32 cells.
This corresponds to the coarse grid used in Level 1. The
exchange length is lex =

√

Cex/(µ0M2
s ) ≈ 4 nm, and
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Fig. 4. Grid patches near a vortex and in a neighborhood of the
north and south domain boundaries.

Fig. 5. Grid cells near the vortex shown in Fig. 4.

therefore vortices cannot be resolved with such a coarse
grid. This can produce erroneous results, as shown in
[10], [33]. For the parameters used in this example, at
least 512×128 cells are necessary to resolve the core of
the vortex. In Fig. 9, we plot the out-of-plane component
of the magnetization computed on the composite grid.
The resolution of the composite grid, in a vicinity of the
vortex, is equivalent to that of a 1024×256 uniform grid.

To perform the visualization of any function defined
on a composite grid, we first interpolate its values to a
series of progressively finer uniform grids whose mesh
widths range from the mesh width of the base level to
the mesh width of the finest level. Remembering that

(a)

(b)

(c)

Fig. 6. Evolution of the magnetization towards the diamond
structure, with the corresponding grid patches. Darker areas (blue)
indicate finer grid patches, while lighter areas (yellow) indicate
coarser grid patches. Time is measured in precession time units
(T = (γµ0Ms)

−1). (a) Initial condition. Grid points accumulate
at the interface and the domain boundary. The arrows indicate the
direction of the magnetization. (b) As finer structures develop, the
grid adapts dynamically. (c) Additional patches are added wherever
necessary.
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(a)

(b)

(c)

Fig. 7. (Continuation of Fig. (6)) (a) As the fine structures disappear,
fine grid patches are replaced by coarser ones. (b) and (c) The
diamond structure is almost formed, and the grid patch distribution
becomes more stable.
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Fig. 8. Out-of-plane component of the magnetization at steady state,
computed with a uniform grid, with 128×32 grid points. The vortices
cannot be resolved in such a coarse grid.
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Fig. 9. Out-of-plane component of the magnetization at steady state,
on the adaptive grid. The grid around the vortex is equivalent to a
uniform grid of 1024×256 grid points. The vortex is fully resolved.

level 1, the base level, is given by a uniform grid, we
1) Interpolate values from the uniform grid with mesh

width ∆xk to a uniform grid with mesh width
∆xk+1 = 0.5 ∆xk;

2) Overwrite the interpolated values with the com-
puted function values coming from level k + 1 of
the composite grid.

We execute this loop for all the levels from 1 to finest
level-1.

For the number of levels considered in this example,
the steady state solution is obtained on the composite



IEEE TRANSACTIONS ON MAGNETICS, 2005 7

grid spending less than 65% of the time needed for the
equivalent 1024 × 256 uniform grid, solving in aver-
age for about 60% fewer unknowns. For this example,
remeshing represents less than 1% of the total processing
time.

V. CONCLUSIONS

We have presented a finite differences methodology to
perform micromagnetics simulations employing adaptive
mesh refinement. The spatial grid dynamically adapts
itself according to both the size of the divergence of
the in-plane components of the magnetization, and the
distance from the computational cell to the boundary of
the domain.

An unconditionally stable time stepping procedure is
employed, allowing for the same time step to be taken for
all the grids in all the refinement levels. In particular, we
can use large time steps for micromagnetics simulations,
and a reduced number of grid points, depending only on
the intricate structure of the magnetization.

The Poisson and Helmholtz-type equations are solved
using a multilevel-multigrid method, which has asymp-
totically optimal complexity. The numerical results in-
dicate that greater efficiency in both the processing
time and in the memory consumption can be achieved,
compared to results obtained with a uniform grid of the
same accuracy. Also, remeshing imposes a negligible
computational overhead.

Ferromagnetic layers are an integral part of larger
structures, such as hard drives, and magnetic memories
(MRAMs). An adaptive procedure like the one described
here can find applications not only in the study of large
ferromagnetic samples, with a variety of small scales,
but also in the study of macroscopic devices, such as
the ones mentioned before. Although this goal has not
been achieved yet, we believe this is a good step in that
direction.

As future research, the methodology introduced in this
article can be combined with a fast summation technique
on adaptive grids to compute the stray field, relaxing
therefore the requirement of flagging the cells close to
the boundary of the domain for refinement. Also, to deal
with arbitrarily shaped domains, boundary corrections
can be added to the exchange and stray fields. Results
in these directions are natural extensions of this adaptive
methodology and will be presented elsewhere.
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