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We present an analysis of the structure of Bloch walls in layered magnetic materials in
the context of micromagnetics. We have obtained the G-limit of a one-dimensional
reduction of the Landau–Lifshitz energy for a double layer in several asymptotic regimes.
As a result, the optimal energy, the core length and the optimal shape of the Bloch wall
have been determined. The effects of the interlayer spacing and the film thickness are
studied. A comparison between the structure of the Bloch and Néel walls in multilayers
is carried out. We illustrate all our findings by numerically minimizing the one-
dimensional energy.
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1. Introduction

With the discovery of giant magneto-resistance and interlayer exchange
coupling, new applications of layered magnetic structures are being considered,
although the magnetic recording industry continues to be the dominating area of
interest for these materials (Prinz 1998; Ziese & Thornton 2001; Hirota et al.
2002). In layered materials, ideally the magnetic field generated in one of the
layers can be balanced by an opposite field generated by the other layer. As a
consequence, multilayers have good permanent magnet properties, and in
particular, a high coercive field and approximately rectangular hysteresis loop
(Puchalska & Niedoba 1991). For that reason, multilayers are an integral part of
magnetic memories, and have been one of the most important applications of
ferromagnetic thin films in the past few years.

In this article, we analyse the structure of Bloch walls in symmetric double
layers consisting of two (infinitely long) ferromagnetic layers of thickness D and
width W, separated by a non-magnetic layer of thickness 2a (see figure 1). In
previous calculations, an a priori functional form for the magnetization with only
one or two degrees of freedom is frequently assumed, and the energy is optimized
in terms of these free parameters (Middelhoek 1966; Slonczewski 1966a,b). In our
work, we do not use an ansatz for the optimal shape of the Bloch wall. We
assume that the magnetic layers are coupled only through the stray field, and we
use a one-dimensional reduction of the Landau–Lifshitz energy (Landau &
Lifshitz 1935; Brown 1963; Aharoni 1996) to analyse the structure of the Bloch
wall. The optimal Bloch wall is obtained minimizing this energy functional.
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Figure 1. One-dimensional wall setting in a multilayer.
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In non-dimensional variables, the Landau–Lifshitz energy for a ferromagnetic
material occupying a volume V is

F ½m�Z q

2

ð
V
ðu2 Cv2ÞdxC 1

2

ð
V
jPmj2dxK 1

2

ð
V
hs$m dx: (1.1)

In equation(1.1) mZ(u, v, w) is the magnetization vector, and jmjZ1 below the
Curie temperature; q is the quality factor and hs is the stray field. The quality
factor is definedas qZKu=ðm0M

2
s Þ,whereKu is the crystalline anisotropy (J mK3),m0

is the permeability of vacuum (m0Z4p!10K7 N AK2), and Ms is the saturation
magnetization (A mK1). In equation (1.1), lengths are measured in units of the

exchange length lZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cex=ðm0M

2
s Þ

p
, where Cex is the exchange coupling parameter

(J mK1). Energy is measured in units of eZDW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0M

2
s Cex

p
. The stray field hs is

obtained by solving the static Maxwell equations in the absence of currents and
charges, and it can be evaluated exactly as h sZKVh, where

hðxÞZ 1

4p

ð
V

xKy

jxKyj3
$mðyÞdy (1.2)

is the magnetostatic potential.
Functional (1.1) has a very rich energy landscape, and the structure of the

minimizers can be very complex (Choksi & Kohn 1998; Hubert & Schäfer 1998;
Choksi et al. 1999; De Simone et al. 1999, 2003; Garcı́a-Cervera 1999). It is well
known that for thick films, higher dimensional structures such as asymmetric
Bloch walls can be observed experimentally (Otto 2002). The aim of this paper is
to study the structure and energy scaling of the simpler one-dimensional walls,
which can be used as building blocks for more complicated structures.

For the study of one-dimensional walls in single films, Aharoni (1966)
introduced the following energy functional, derived from the full Landau–Lifshitz
energy under the only assumption that the wall be one-dimensional

Fq;d½m�Z q
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1

2
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vðGduÞ; (1.3)

where dZD/l represents the (rescaled) thickness of the sample,

GdðxÞZ
1

2pd
log 1C

d2

x2

� �
; (1.4)
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1913Bloch walls in multilayers
and the convolution is defined as

v * GdðxÞZ
ðN
KN

vðyÞGdðxKyÞdy: (1.5)

The set of admissible functions is

CZ

�
mZðu;v;wÞju;v2H 1ðRÞ; w 02L2ðRÞ;

jmjZ1 a:e:; m/Ge3 as x/GN

�
:

(1.6)

Two kinds of one-dimensional structures have been observed experimentally:
Néel walls, in which the magnetization rotates in the plane (so vZ0) and are
characteristic of thin films, and Bloch walls, in which the magnetization performs
an out-of-plane rotation (so uZ0), and are characteristic of thick films. The
structure of Néel and Bloch walls in single layers has been the subject of much
recent work (Garcı́a-Cervera 1999, 2004; De Simone et al. 2003; Melcher 2003,
2004), and a new model for the study of one-dimensional walls in double layers
was introduced by Garcı́a-Cervera (in press). The model was derived from the
Landau–Lifshitz energy under the one-dimensional assumption, and a detailed
analysis of the Néel wall in multilayers was carried out.

In the Néel wall setting, it was proved that the magnetization rotates in
opposite directions in the two layers in order to achieve maximum cancellation in
the stray field, which produces an effective anti-ferromagnetic coupling between
the layers. As a result, the logarithmic tail, characteristic of the Néel wall in
single layers, is no longer present in the double layer case, and the wall becomes
more local, with shape similar to that of the Landau–Lifshitz wall (Landau &
Lifshitz 1935; Garcı́a-Cervera in press).

In contrast, we show here that in a multilayer, the Bloch wall rotates in the
same direction in both layers, which provides an effective ferromagnetic coupling
between the layers. As a consequence, we show that the structure of the Bloch
wall in a multilayer is similar to the structure of the Bloch wall in the single layer
case.

For the study of Bloch walls (u1Zu 2Z0), the model derived by Garcı́a-Cervera
(in press) reduces to
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2
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v1ðQa;d * v2Þdx; (1.7)

wherem1Z(u1, v1, w1) andm 2Z(u 2, v 2, w 2) are the magnetization vectors in the
top and bottom layer, respectively,

Qa;dðxÞZ
1

2d2p
log

x2Cð2aCdÞ2

x2Cð2aC2dÞ2
� �

Klog
x2C4a2

x2Cð2aCdÞ2
� �� �

; (1.8)
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C. J. Garcı́a-Cervera1914
and Gd is as in equation (1.4). In equation (1.8), aZa/l is the rescaled thickness of
the non-magnetic interlayer. It is convenient to write the energy in Fourier space,
since a convolution in real space becomes multiplication in the frequency domain.
The energy (1.7) can be written in Fourier space as
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(1.9)

where

cGdðxÞZ
1KeK2pdjxj

2pdjxj ; (1.10)

dQa;dðxÞZ2pjxjeK4pajxjcGd

2ðxÞ (1.11)

Note that both cGd and dQa;d are positive.
The remainder of this article is organized as follows: a brief summary of the

results proved by Garcı́a-Cervera (in press) regarding the Néel wall are presented
in §2. The Bloch wall is considered in §3. We obtain the asymptotic limit of the
energy, and a description of the structure of the wall is presented in §4. All these
results are illustrated numerically in §5.
2. Néel walls: review

The Néel wall has a very rich structure due to the non-local nature of the
interaction in the Landau–Lifshitz energy functional. The optimal energy
scaling for a Néel wall in a single layer was obtained by Garcı́a-Cervera (1999,
2004). It was shown that for a given dO0, positive constants c0 and C0 exist,
such that

c0
logð1=qÞ% inf

m2C;m2Z0
Fq;d½m�% C0

logð1=qÞ ; (2.1)

where C is defined in equation (1.6).
It was also shown that the Néel wall has a long, logarithmic tail, which extends

the stray field interaction to great distances. An improvement of this result, with
higher order terms in the energy scaling was used by De Simote et al. (1999), and
some new results in this direction have appeared in the work of Melcher
(2003, 2004).

The interactions between Néel walls in a double layer were considered by
Garcı́a-Cervera (in press). It was shown that the stray field induces an anti-
ferromagnetic coupling between the layers that maximizes the cancellations in
the stray field. As a result, the optimal energy changes dramatically, and it was
Proc. R. Soc. A (2005)



1915Bloch walls in multilayers
shown that

4
ffiffiffi
q

p
% inf

m2C;m2Z0
Fq;a;d½m�%C0

ffiffiffi
q

p
(2.2)

for some positive constant C0. The Néel wall in a symmetric double layer no
longer has a logarithmic tail. The internal length scale of the transition layer is of
order O(qK1/2), and the limiting profile of the wall (as q/0) is the minimizer of

Ga;d½m�Z
ð
R

m2
1 dxC

dðdC3aÞ
3

ð
R

ðm 0
1Þ2 dxC

ð
R

jm 0j2dx: (2.3)
3. Ferromagnetic coupling and asymptotic limits

The magnetization in a Bloch wall undergoes an out-of-plane rotation, as
opposed to the Néel walls, where the rotation is in-plane. As a result the
structure of the Bloch wall, described in theorem 3.2 below, is very different from
that of the Néel wall. In a double layer, one of the consequences of this out-of-
plane rotation is that the Bloch wall that appears in one layer is effectively
ferromagnetically coupled to the Bloch wall in the other layer, as shown in
lemma 3.1 below. This ferromagnetic coupling prevents certain cancellations in
the stray field from occurring, and therefore the differences in the structure of the
Bloch wall between a single and a double layer are not as dramatic as in the Néel
wall case, described in §2.

Lemma 3.1. If (m 1, m 2) is a global minimizer of (1.7), where m1Z(0, v1, w1)
and m 2Z(0, v2, w2), then v1Zv2.

Proof. The existence of minimizers can be established following the same proof
as in the Néel wall case (see Garcı́a-Cervera in press; lemma 2.1 and the
subsequent discussion), and will not be presented here.

The energy functional (1.7) can be rewritten as

Fq;d;a½m1;m2�Z
1

2
Fq;d;a½m1;m1�C

1

2
Fq;d;a½m2;m2�

C
d

4

ð
R

ðv1 Kv2Þ$Qa;d*ðv1 Kv2Þ dx:
(3.1)

Each term in the previous expression is non-negative, and therefore for the
minimum energy we need v1Zv2, effectively producing a ferromagnetic coupling
between the layers. &

As a consequence of lemma 3.1, we only need to study the energy functional

Fq;d;a½m�Z q

ð
R

v2 dxC

ð
R

jm 0j2dxC
ð
R

v Gd K
d

2
Qa;d

� �
*v dx; (3.2)

or in Fourier space

Fq;d;a½m�Z q

ð
R

jbvj2dxCð
R

j2px bmj2dxC
ð
R

jbvj2 cGd K
d

2
dQa;d

� �
dx: (3.3)
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We proceed now to study the energy functional (3.3) and the effects of the
interlayer spacing, and the thickness of the ferromagnetic layers.

For aZ0, note that

cGd K
d

2
dQ0;d

� �
ðxÞZcGdðxÞð1KpdjxjcGdðxÞÞZ

ð1KeK2pdjxjÞð1CeK2pdjxjÞ
4pdjxj Z cG2dðxÞ;

(3.4)

and the energy functional (1.7) reduces to Aharoni’s model (1.3) for a Bloch wall.
Therefore, when a/1, the minimum energy in the double layer is obtained by
the Bloch wall that corresponds to a single layer of thickness 2d, in agreement
with the experiments and observations done by Middelhoek (1966).

If a[1, and dZO(1), the interaction between the two layers vanishes, and we
obtain a Bloch wall in each layer of thickness d.

Before we proceed with the rigorous analysis of functional (3.2), we give a
heuristic argument to determine the relevant length-scales, energy scaling and
asymptotic regimes.

If d[1, the leading term in the energy is of the form

Fq;d;a½m�wq

ð
R

v2C

ð
R

jm 0j2C 1

d

ð
R

jbvj2
jxj dx: (3.5)

In order to determine the optimal wall length, we look for a wall profile of the
form m(x)Zm(lx), and optimize in l. In terms of l, the energy scales like

Ew
q

l
ClC

1

dl2
: (3.6)

Optimizing in l, we need to solve the following equation:

l3KqlK
2

d
Z 0: (3.7)

For parameters typical of permalloy (CexZ1.3!10K11 J mK1, KuZ5!102 J mK3,
MsZ8!105 A mK1), the quality factor is qz6.21!10K3, so we are interested in
the low anisotropy limit. If qZ0, then lZO(dK1/3), which motivates the change
of variable lZdK1/3m. Equation (3.7) becomes

m3 Kqd2=3mK2Z 0: (3.8)

Since we are mostly interested in the effect that the stray field has in the
structure of the wall, we only consider here the asymptotic regimes qd2/3ZO(1)

and qd2/3/1, which both yield mZO(1), or lZO(dK1/3). Consequently, EwdK1/3

in this regime. This heuristic argument suggests the change of variable x/d1/3y,
and the energy rescaling: ~Fq;a;dZd1=3Fq;a;d.

If ~mdðxÞZmðdK1=3xÞ, then

c~mdðxÞZ d1=3 bmðd1=3xÞ: (3.9)
Proc. R. Soc. A (2005)
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Therefore, the energy becomes

~Fq;d;a½m�Z qd2=3
ð
R

v2 C

ð
R

jm 0j2dx

C

ð
R

jbvj2ðxÞ 1KeK2pd2=3jxj

2pjxj KeK4padK1=3

jxj ð1KeK2pd2=3jxjÞ2

4pjxj

 !
dx; (3.10)

and we observe three additional distinguished limits: a/d1/3, a[d1/3 and
awd1/3. We proceed to analyse each situation. A natural setting for the study of
the limiting behaviour of the minimizers of a family of functionals is the notion
of G-convergence (Dal Maso 1993), by which we identify the limits as minimizers
of a certain limit functional. For our purposes, we only need the following
characterization of G-convergence (Dal Maso 1993), which is often taken as its
definition:

Theorem 3.1. Let (X, T) be a topological space, and let Fh be a family of
functionals parametrized by h. A functional F0 is the G-limit of Fh as h/0 in T, if
and only if the two following conditions are satisfied:
(i)
Proc.
If uh/u0 in T, then lim infh/0Fh(uh)RF0(u0).

(ii)
 For all u02X, there exists a sequence uh2X, such that uh/u0 in T, and

limh/0Fh(uh)ZF0(u0).
In the following theorem, we identify the G-limit of (3.10) in the different
asymptotic regimes.

Theorem 3.2. Consider functional (3.10), defined in

AZ fm Z ð0; v;wÞ : R/R
3jjmjZ 1; v2H 1ðRÞ; w 02L2ðRÞg: (3.11)

Assume that d/N and q/0 in such a way that qd2/3/gR0. Consider

BZ fm Z ð0; v;wÞ : R/R
3jjmjZ 1; v2HK1=2ðRÞ; m 02L2ðRÞg: (3.12)

For m2A, define

F0;g½m�Z
g

ð
R

v2 dxC

ð
R

jm 0j2dxC 1

4p
jvj2HK1=2ðRÞ; m2B;

CN; otherwise;

8><>: (3.13)

F1;g½m�Z
g

ð
R

v2 dxC

ð
R

jm 0j2dxC 1

2p
jvj2HK1=2ðRÞ; m2B;

CN; otherwise;

8><>: (3.14)

where

jvj2HK1=2ðRÞ Z

ð
R

jbvj2
jxj dx; (3.15)
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and

F2;g;b½m�Z
g

ð
R

v2 dxC

ð
R

jm 0j2dxC
ð
R

jbvj2 1

4pjxjCbbG2bðxÞ
� �

dx; m2B;

CN; otherwise:

8><>:
(3.16)

Then, the following hold.
(i)
Proc
If a/d1/3,
GK lim
d/N

~Fq;d;a½m�ZF0;g½m�: (3.17)
(ii)
.

If a[d1/3,
GK lim
d/N

~Fq;d;a½m�ZF1;g½m�: (3.18)
(iii)
 If aZbd1/3,
GK lim
d/N

~Fq;d;a½m�ZF2;g;b½m�: (3.19)

Proof. We only include the proof of (i), since the others are similar. To
establish the G-limit in (i), we need to show that the two conditions in theorem
3.1 are met.

To prove condition (i) in theorem 3.1, we consider a sequence {md} such
that

~Fq;a;d½md�%M ; cdO0; (3.20)

for some MO0. Since the energy is translation invariant, we can assume that
md(0)Ze2 for all dO0. It follows from lemma 3.2 below that the sequence is
uniformly bounded in H1(R). Therefore, there exists a subsequence (not
relabelled) which will converge to some m2A weakly in H1(R) and strongly
in L2

locðRÞ.
Give e>0, dd0O0 such that cdRd0 and cjxjRdK2/3:

1KeK2pd2=3jxj

2p
KeK4padK1=3jxj ð1KeK2pd2=3jxjÞ2

4p

 !
R

1

4p
Ke: (3.21)

Therefore, dCO0 such thatð
jxjRdK2=3

jbvdj2
jxj dx%C ; cdO0: (3.22)

As a consequence, m2B, and (i) follows from the weak convergence of the
sequence {md} in H1, and lemma 3.3 below.

To prove (ii) in theorem 3.1, given m2B, consider mdZm for all dO0. The
result follows from the dominated convergence theorem. &
R. Soc. A (2005)



1919Bloch walls in multilayers
The proof of theorem 3.2 relies on lemmas 3.2 and 3.3 below. In lemma 3.2 we
establish a kind of interpolation inequality. If follows from this lemma that a
sequence of functions for which functional 3.10 is bounded will be uniformly
bounded in H1(R).

Lemma 3.2. Consider Sa;dZGdKd=2Qa;d. There exists an e0O0 such that
c0!e%e0 ð

R

v2 dx%
1dSa;dð3Þ

ð
R

vðSa;d * vÞdxC
1

4p232

ð
R

ðv 0Þ2dx: (3.23)

Proof. Using Plancherel’s theorem, and since dSa;dðxÞ is a decreasing function
of x in jxj2½0; e0� for some e0>0, we obtainð

R

v2 dx Z

ð
jxj%3

bv2 dxCð
jxjO3

bv2 dx
%

1dSa;dð3Þ

ð
jxj%3

bv2dSa;dðxÞdxC
1

32

ð
jxj%3

x2bv2 dx; ð3:24Þ

which gives the desired inequality. &

In the following lemma, proved by Garcı́a-Cervera (2004), we establish the
weak convergence of the non-local term in equation (3.10). The lower semi-
continuity of the family of functionals f ~Fa;dgdO0 with respect to weak convergence
in B follows directly from it.

Lemma 3.3. Consider a family of functions fKhghO03L1ðRnÞhL2ðRnÞ such
that the family of Fourier transformers fbKhghO03LNðRnÞhL2ðRnÞ is uniformly
bounded. Assume that

lim
h/0

bKhðxÞZ bK0ðxÞ for almost all x2R
n; (3.25)

where bK02LNðRnÞ. Then, if fuhghO03L2ðRnÞ converges weakly in L2(R2) to
u02L2ðRnÞ as h/0, then the family fvhghO0ZfuhKhghO0 converges weakly in
L2(Rn) to v0ZFK1ðbu0

bK0Þ, where we denote by FK1 the inverse Fourier
transform.
4. Structure of the Bloch wall

In order to understand the structure of the minimizers of energy functional

F½m�Z
ð
R

jm 0j2C 1

4p

ð
R

jbvj2
jxj dx; (4.1)

we use an exact Fourier representation of the minimizer of a related energy
functional, following the methodology introduced by Garcı́a-Cervera (1999,
2004). We compare the structure obtained in this section with the numerically
computed minimizer of equation (4.1) in §5.
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For the numerical simulations presented in §5, we write functional (4.1) in real
space as

F ½m�Z
ð
R

jm 0j2dxC
ð
R

ðv *4Þ2dx (4.2)

where b4ðxÞZ1=
ffiffiffiffiffiffiffiffiffiffiffi
4pjxj

p
. Inverting this Fourier transform, we obtain

4ðxÞZ 1ffiffiffiffiffiffi
4p

p
ð
R

e2pixx
1ffiffiffiffiffi
jxj

p dxZ
2ffiffiffiffiffiffi
4p

p
ðN
0

cosð2pxxÞffiffiffi
x

p dxZ
1

2p

ffiffiffiffiffiffi
p

jxj

r
: (4.3)

Since jmjZ1, we can write mZð0; g;G
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kg2

p
Þ, and the energy (4.1) becomes

F½g�Z
ð
R

ðg 0Þ2

1Kg2
dxC

1

4p

ð
R

jbgj2
jxj dx: (4.4)

The nonlinearity is seen only in the exchange term, and the main contribution
will be near xZ0, since g(0)Z1. Thus, we can get a qualitative description of the
minimizer by replacing this functional by

G½g�Z
ð
R

ðg 0Þ2dxC 1

4p

ð
R

jbgj2
jxj dx; (4.5)

and minimizing it with the constraint that g(0)Z1. Since jgj%1, this procedure
always provides us with a lower bound on the energy (4.4). The advantage of this
procedure is that we can then solve the minimization problem for (4.4) exactly in
Fourier space. The minimizer is

bgðxÞZ 1

2

C0

4p2jxj2 C 1
4pjxj

; (4.6)

where C0 is chosen so that g(0)Z1. From

1Z gð0ÞZ
ð
R

bgðxÞdxZ ð
R

C0

4p2jxj2C 1
4pjxj

dx; (4.7)

we obtain C0Z3ð31=2Þ41=3=2z4:124 188 910 995 81. Then

gðxÞZC0

ðN
0
cosð2pxxÞ 4px

1C16p3x3
dx: (4.8)

We can rewrite this using residues as

gðxÞZ C0

3$22=3
exp K

ffiffiffi
3

p

24=3
jxj

� � ffiffiffi
3

p
cos

jxj
24=3

� �
Ksin

jxj
24=3

� �� �
K

C0

p

ðN
0
eKtjxj t

1C4t6
dt:

(4.9)

This expression shows the presence of oscillations near the core of the Bloch wall,
and fast decay in the tail. The presence of these oscillations is necessary so that
the total magnetization is zero. The energy of this profile can be computed by
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evaluating equation (4.5)

G½g�Z
ð
R

jbgj2 4p2x2C
1

4pjxj

� �
dxZC0: (4.10)

Taking into account the energy rescaling considered, we expect the Bloch wall
energy to be EwC0d

K1/3.
A similar approximation to the one presented here can be performed for the

other functionals in theorem 3.2. However, since the leading term in the stray
field energy in equation (3.16) is the same as in equation (3.13), we obtain the
same qualitative behaviour, and therefore the analysis will be omitted here.
5. Numerical experiments

We have developed a modified Newton’s method with an inexact line search for
energy minimization (Dennis & Schnabel 1983; Nocedal & Wright 1999). The
method is well known, so we will only describe our implementation briefly.

We consider a finite interval IZ[KM,M ], and restrict the functional to I. We
have performed simulations in several intervals of increasing size until no change
was found in the characteristics of the wall. For the results presented here, we
used IZ[K200,200], although in the figures a smaller interval is shown for clarity
of presentation. We define the grid points xiZKMC iDx, for iZ0, 1, ., nC1,
where DxZ2M=ðnC1Þ. The magnetization is approximated using linear
interpolation in the subinterval IiZ[xi,xiC1], for iZ0, 1, ., n. We impose the
boundary conditions u0ZunC1Z0. The parameter d was varied in the range
d2[1,1024]. The value of the parameter a did not seem to produce any signi-
ficant change, except in the regime awd1/3. For the simulations shown here we
set aZ1.

To evaluate the stray field, we need to approximate convolution integrals of
the form

vðxjÞZ
ðM
KM

uðsÞKðxj KsÞds: (5.1)

Substituting the piecewise linear interpolant for u, and grouping terms, we can
write the convolution in the form

vj Z
Xn
iZ1

KjKiui; (5.2)

where

Kl ZDx

ð1
0
ð1K tÞKðDxðlK tÞÞC tKðDxðlC1K tÞdt: (5.3)

The sum (5.2) has the shape of a discrete convolution, and it can therefore be
efficiently evaluated using the fast Fourier transform in O(n log n) operations.
The integrals in equation (5.3) can be evaluated to machine precision using
adaptive Gaussian quadrature (Isaacson & Keller 1966).
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Figure 2. Bloch wall structure as a function of d, for aZ1.

�

Figure 3. Bloch wall structure as a function of d, with OX-axis rescaled, for aZ1. The shape of the
wall converges to a limiting profile.
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The unit length constraint in the magnetization is taken into account by
considering a line search on the function

hðeÞZFq;a;d

mCep

jmCepj

� �
;

where p is a descent direction, i.e. h 0(0)!0.
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Figure 4. The Bloch wall profile for dZ256 and aZ1, obtained minimizing the Bloch wall energy
(1.7), is compared with the minimizer of the limiting energy (4.1), and the profile obtained using
Fourier analysis (4.9).

Figure 5. Log–log plot of the energy as a function of d for aZ1. We plot the minimum energy of
(1.7) for different values of d, and compare it with the limiting energy (4.1) and the energy of the
Fourier approximation (4.9).

1923Bloch walls in multilayers
We have used this method to obtain both the minimum energy and the
structure of the optimal wall profile for functionals (1.7), (4.1), (4.5) and (3.19).

In figure 2 we show the structure of the Bloch wall for several values of the
parameter d. We can see the oscillations predicted by the Fourier representation
Proc. R. Soc. A (2005)



Figure 6. Bloch wall profiles in the regime aZd1/3, d[1. Convergence to the minimizer of energy
(3.19) is apparent. The profiles are compared with the minimizer in the regime aZd1/3 to show the
qualitative similarities.
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(4.9), which do not appear in the classical Landau–Lifshitz wall (Landau &
Lifshitz 1935).

The same wall profiles are shown again in figure 3, but the OX-axis has been
rescaled by dK1/3. It is clearly seen that the wall profiles converge as d/N,
confirming that the core length of the wall is d1/3.

In figure 4, we plot the representation (4.9), and compare it to the minimizers
of (1.7) and (4.1). The profile obtained using the Fourier approximation
described earlier gives a very good qualitative description of the actual
minimizer. It is also clear that the energy (4.1) accurately captures the
asymptotic behaviour of equation (1.7) as d/N.

We present in figure 5 the energy obtained by minimizing (1.7) and (4.1). In
addition, we have included the energy of the Fourier approximation:

E ZC0

1

d1=3
: (5.5)

The minimizer for the asymptotic energy (4.1), computed numerically, is
C1Z4.129 787 529 753 19. Energy (4.1) predicts a Bloch wall energy EwC1d

K1/3,
in very good agreement with the energy obtained using the Fourier
approximation. It follows from figure 5 that we have captured the right energy
scaling. In addition, the energy obtained from the Fourier representation is
indistinguishable from the energy obtained minimizing (4.1).
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Finally, in figure 6, we plot the minimizers of energy (1.7) for several values
of d, and for aZd1/3. These profiles are compared with the minimizer of the
limiting energy (3.19) with bZ1, showing good agreement. The minimizer of
(4.1) is also plotted for comparison. The qualitative details of the walls are the
same, but there are some small quantitative differences.
6. Conclusions

We have used a new one-dimensional model to analyse the structure and energy
of the Bloch wall in symmetric double layers. We have shown that the Bloch wall
energy induces an effective ferromagnetic coupling between the layers, as
opposed to the Néel wall case, where the coupling is anti-ferromagnetic. As a
result, the structure of the Bloch wall in double layers is very similar to the
structure of the same wall in single layers, in contrast to the Néel wall case,
where significant structural changes have been reported (Garcı́a-Cervera in
press).

In physical variables, the Bloch wall was found to have a core length

core lengthwD1=3ðm0M
2
s ÞK1=3C1=3

ex ; (6.1)

and optimal energy

Bloch wall energywD2=3WC2=3
ex ðm0M

2
s Þ1=3: (6.2)

The interplay between the crystalline anisotropy, film thickness, and interlayer
spacing has been analysed, and the structure of the Bloch wall has been
determined for the corresponding asymptotic regimes in the context of
G-convergence.

Using Fourier analysis and a convexification of the Landau–Lifshitz energy we
have obtained a good qualitative description of the limiting profile of the Bloch
wall. The numerical results presented show very good agreement between the
structure and energy of this exact minimizer and the numerically computed
Bloch walls.

The minimizers of the Landau–Lifshitz energy functional can be very complex,
and Bloch walls can be used as building blocks of these more complicated
patterns. With the analysis of the Bloch and Néel walls, we have laid down the
foundation for the study of higher dimensional structures such as cross-tie walls
and asymmetric Bloch walls in multilayers.
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Garcı́a-Cervera, C. J. In press. Néel walls in low anisotropy double layers. SIAM J. Appl. Math.
Hirota, E., Sakakima, H. & Inomata, K. 2002 Giant magneto-resistance devices. Berlin: Springer.
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