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Effective dynamics for ferromagnetic thin films
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In a ferromagnetic material, the dynamics of the relaxation process are affected by the presence of
a strong shape or material anisotropy. In this article, we systematically explore this fact to derive the
effective dynamical equation for a soft ferromagnetic thin film. We show that, as a consequence of
the interplay between shape anisotropy and damping, the gyromagnetic term is effectively also a
damping term for the in-plane components of the magnetization distribution. We validate our result
through numerical simulation of the original Landau—Lifshitz equation and our effective equation.
© 2001 American Institute of Physic§DOI: 10.1063/1.1371000
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The dynamics of the magnetization distribution in a fer- 2)a
romagnetic thin film are an interesting and important prob-
lem from both scientific and technological points of view. + @J' |[VU|?dx. 3)
Improvement of depositioiflithography techniques allows 2 Jr2
such films to be made with high precision and relative easey, £ (3) ¢_ is the exchange constare VM |?/M? is the
Interest i using them as. magf‘e“c memory dev_lce xchange interaction energy between the spindv/My) is
(MRAMSs) has given a greater incentive to study this subject.[he energy due to material anisotropy, is the permeability
Since defects, impurities, and thermal noise play importanbf vacuum, —2uoH.-M is the energy due to the external

ro_Ies ‘T‘ the Qynamics of the mggnetization field in nanom_etegpp”ed field,Q) is the volume occupied by the material, and
thick films, it also makes an ideal playground for studylngfinally the last term in Eq(3) is the energy due to the field

som_:_ahoféhe naposcg{tra] physilc‘é.t_ tion distribution in a f induced by the magnetization distribution inside the material.
€ dynamics ot the magnetization diStribution In a 1€1= ;g jnqy)ceq fieldHs= —VU can be computed by solving
romagnetic material are described by the Landau-Lifshitz

equatiort,’ V.M in O,
AU :{ 0 outside (Q, )
ya
ot YMXH— M_SM XMXH, 1) together with the jump conditions
[U]=0, ®
where|M|=Mj is the saturation magnetization, and is usu- JU
ally set to be a constant far from the Curie temperatyres —|==M-, (6)
the gyromagnetic ratio and is given by=ge/(2m,), where dv

e andm, are the(positive charge and mass of the electron, at the material-vacuum interface. In EqS) and (6) we

res_pectlvely, ang has .values close to 2_for many fgrromag denote by ] the jump of a quantity across the interface. The
netic materials. The first term on the right-hand side is the .

. . . vector v represents the outward unit normal on the boundary
gyromagnetic term and the second term is the damping term

«a is the dimensionless damping coefficie® is the local of .
field, computed from the Landau—Lifshitz free energy func- SinceM and’+ have the same physical dimensions, we

can writeH=Mgh, H;=Mhg, H.=Mgh,, andM=Mym.

tional: . . ; .
Without loss of generality, we will assume that the material
is uniaxial, and thatb (m) =K,(m3+m3). Equation(1) is

2 SE , rewritten as
M @ am
W=—,u,0yMS mXh— ueyM¢a mXmXh, )
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_ Ky Cex
h=— 5 (M8, +Mge;) + sAm+hg+he. (8
MolVls oM
Here we use the notatiog,=(1,0,0), e,=(0,1,0), ande;
=(0,0,1).

The constanj.yyM ¢ has dimensions of the reciprocal of
time (s 1). Therefore we rescale in timé= (uoyMg) ~1t,
and we rescale the spatial variabie-Lx wherelL is the
diameter of(). The equation becomes

Ez—mxh—ameXh, (9)
where
h=—Q(m,e,+mze;)+ npAm+h,+h,. (10

Here we have defined the dimensionless parameggrs
=Ky/(uoM3), and 7= Cey/ (uoMZL?).

RESULTS AND DISCUSSION

In many applications, the material is a thin film. Assume
that the lateral dimensions of the material occupy kye
plane and the thickness &in dimensionless unitsd<1).
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This motivates us to introduce the rescaling— éms, t
—6t, hy—sh;, andh,— 8h,. By using this rescaling, we
implicitly assume that both paramete@® and », and the
external fieldh,, are small:Q~ 8, 7~ 6, and|hg|~ 8. The
Landau—Lifshitz system of equations can therefore be rewrit-
ten as

oMy e - - -
5?25 m3h2—5m2h3+a(5h1—5(m'°h')ml
— 8?mghamy),
&mz T 20 T P r R
7:5m1h3_5 m3h1+a(5h2—5(m 'h )mz
— 8°mghsmy),
,IMg ~ ~ e
5 7:5m2h1_5m1h2+ a(5h3—5 (m,'h,)m?)

— 6°mghgmg).
Collecting the leading order terms, assuming th&ta,
we get

For thin films, the energy due to surface charges is more

significant than the energy due to volume charge§/¢m).
Then, from the viewpoint of energetics, taeomponent of

m, mg, must be small since it contributes to the surface
charge. As a result, the leading order energetics in a thin film

is much simplified.

To be more precise, let us assume thatdoes not
change across the film. We will writen=(m’,ms), where
m’=(m;,m,), and usef to denote the Fourier transform of
f.

The energy of the self-induced field can be written in
Fourier space &S

e[ (&M
U TE (1-T'5([&))) d&
/*LO(S ~ 2
+ | mals(lé]) dé, (1D
R
where
1_e—27r§\§\
§=(£1.62) andF5(|§|)=T5|§| (12
For |£|<1/8, Ey, simplifies to
_pomd® [ (£m')? /’«omsf -
M= 2 18 dé+ > RZm3d§. (13

Since the first term on the right-hand side contains an extr
small coefficient 5, m; must be small compared with

(m4,m,). For a more thorough treatment of the energetics in

thin films, we refer the reader to Refs. 10 and 11.

The dynamics in a thin film are also severely con-
strained. As an indication, we note that, from E#3), the
self-induced field takes the form

hs=(oL1(my,my), oL (Mg, my), ms). (14

ﬁ3=a(mlﬁz—m2ﬁ1), (15
amy L _
— = —myhz+a(hy—(m’-h")my),
(16)
m, - - ~
—= =mghz+a(h,—(m’-h")m,).
To leading orderm?+ma=1, so we can write
~ 1 ~
m; 3=;m2(m1h2—m2h1)———(hl—(m’ h")my),
N ~ (17)
mihz=—(hy;—(m’-h")my)

Thus, the third component can be effectively eliminated from
the equations.
Going back to the time scalke we have

omy 1 ~ ~ ~

—r ~ 9| 5 Ta|(ha=(mihy+m;hy)my),

am, 1 ~ ~ ~ (18
7:(5 Z‘i‘a’ (hz_(m1h1+m2h2)m2).

Equation(18) is the gradient flow of the in-plane compo-
nentsm’=(m;,m,,0) associated with the reduced energy

a
1
F[m']= Ef {Ced VM'|2+ ®(m’)—2he-m’'} dX
Q/

1f Vu|2d 19
+3 R3| ul*dx. (19

This analysis reveals several interesting facts about thin
films. Equation(15) indicates that, in a thin film, the dynam-
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ics of the normal component of the magnetization, are
slaved by the in-plane components. As a result, the gyromag
netic term is effectively also a dissipative term for the in- l

plane components. Equatioh8) shows the seemingly para-
doxical fact that the dynamics in very thin films can be
accelerated by decreasing the value of the damping coeffi — —
cient @. One of the advantages of our effective Ef8) is
that it is much simpler to solve numerically than the full FIG. 1. Initial and final configurations in Figs. 2 and 3. The picture on

Landau—Lifshitz equation. The time stepping can be perthe left is the initial configuration. The picture in the middle is the final
formed with the methods described in Refs. 12 and 13. Theonfiguration when there is no applied field. The picture on the right is

complexity of these methods is comparable to that of solvingjf‘; final ,128“fi9“'3t1i§8 when there is an applied fielt,
scalar heat equations implicitly, and the time step size re- 29 c0s/180).sin6/180).0.

quired for stability is independent of the grid size.

. G oing back to th? generql situation described by thethe Landau-Lifshitz equation and our effective equation for
original Landau-Lifshitz equatiofil), the first term on the an aspect ratiod=2.x10-2 are presented in the first two

right-hand side is the conservative gyromagnetic term. The ;
. : . columns for comparison. In the other two columns we com-
second term is the damping term. Typically<l («

. : pare the results for an rafie 1.25x 1 16 tim
~0.01-0.1) so the conservative term dominates. Our prewpaet € results for an aspect rafie 1.25< 10"~ ( 6t. es
. . . smalle). We clearly see the presence of fast moving spin
ous argument suggests that the effective dynamic equation ; . : s
. . .o waves in the simulations of the full Landau—Lifshitz equa-
(18) is valid whens<a. In that case, the small dissipative

. o . tion for the two values of the aspect ratio. These spin waves
term triggers a large dissipative effect from the conservative

. . oy : are more evident wheA=2.x10"2. In the effective equa-
gyromagnetic termwith coefficient 1#) for the in-plane . i
. .tion there are no such waves, but the overall relaxational
components because of the severe geometric constrai

However, for typical samples used in MRAM applications ynamics for both values af seem to be correctly captured
we often haves~ a.

—

A\
|

"by Eq. (18). Certainly closer agreement is found for the
smaller value ofés. Therefore, the effective dynamics do

NUMERICAL EXPERIMENTS

§=2.x10"2 §=1.25x10"%
Effective

In order to assess the validity of our effective equation
(18) in different parameter regimes, we carried out direct Landau-Lifshitz
micromagnetics simulations of the Landau-Lifshitz equa- £
tions. We used the following values of the parameters to
model a permalloy film:

wo=4mx10"7 N/A?,
y=176x10" T 1s%
M =8.0x10° A/m,
K,=5.0x10? J/nT,
Ce=1.3x10"11 J/m.

We compute the effective field by approximating the
magnetization using piecewise bilinear functions. For the X
time stepping we have used a fourth order Runge—Kutta
method. In our simulations, we have used 128 and 256 gric
points in each direction, which is enough to resolve the do-
main walls.

In our first experiment we compare the solution to the (d)
equations for different values of the aspect raéipfixing «
at 0.1. A sketch of the initial and final configuration is shown
in Fig. 1. In Figs. 2 and 3 we present images at different
times during the relaxation process with and without an ex-
ternal field. In these images, we show the divergence of the(e)
in-plane componentsnf;,m,) on a gray scale. The Movies FiG. 2. Simulation of the full Landau-Lifshitz dynamics and the effective
are available online, and can be viewed at http://dynamics. The damping coefficient is fixedat 0.1. The two columns on
www.math.princeton.edu/cgarcia. The first and third col- ;h:m's:ﬁecorzisoao?;’r;o ;hxelbﬁgd?ﬁ;Lfirzmzsdé’gfr‘rensiCinad”ftioog:ee;foﬁgxﬁ] dy-
umns are the results of the full simulation of the original i* 7" tquza) 010, (5) .15, (6 0.23. () 0.60, andfe) 0 s The two
Landau-Lifshitz equation, and the second and fourth COlzoymns on the right correspond &-=1.25x 10-2. The frames correspond
umns are the results of our effective equation. The results fab the following timest= (f) 0.10,(g) 0.25,(h) 0.50, (i) 1.0, and(j) 3.0 ns.
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0=2.x10"2
Landau-Lifshitz

Effective

§=125x10"3
Landau-Lifshitz ~ Effective
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03 ; . (m1h2—m2h1)/a
. ' _ h3
04 05 1 15
(a) Time (nanoseconds)
-3
4x10

§=125x1073

~0 1_ 2 3 4
(b) Time (nanoseconds)
FIG. 3. Simulation of the full Landau-Lifshitz dynamics and the effective 1.4% 10” ’ .
dynamics. The damping coefficient is fixed @t 0.1. The applied field is ’ ,:" . .(mh -mnh)ia
he=24[ cos(/180),sin¢r/180)]. The two columns on the left correspond to 12t N h 172 T2
the Landau-Lifshitz dynamics and our effective dynamic equationsfor HE -3
=2x 102, The frames correspond to the following times: (a) 0.15, (b) 1 '-|
0.45,(c) 1.1, (d) 1.6, and(e) 1.8 ns. The two columns on the right corre- R ¥
spond tos=1.25x 102 for times: t= (f) 0.15,(g) 0.65, (h) 1.75, (i) 2.10, o8 o J
i H 4
and(j) 21.0 ns. 06 .: i & y
§ i
0.4 '.' II "/‘
) [H\
what is expected: filter out the fast moving spin waves which 0.2% ©N 5=333x1074
are difficult to resolve numerically, but capture correctly the 0 5 5 4
slower relaxational dynamics. The observation that spin (c) Time (nanoseconds)

waves are not important for the relaxational process might
only be valid for the case of<«. In the opposite regime

when 6> «a, the opposite has been reported, namely, the spi

waves are the mechanism for damping and relaxafion.
In our second experiment we have focused on the time
history of one single magnetic spin in order to assess thevaves for all three different values of the aspect ratio. How-

validity of Eq. (15), that is,

1
h3%;(m1h2—m2h1), for a> 4.

(20

We have solved the full Landau-Lifshitz equati¢h
for several values of the aspect ratho fixing « at 0.1. In
Fig. 4 we plot the time history of the two quantitids, and
(myh,;—mqhy)/a, at one grid location, for three different creasing the field, in order to close the loop. For our experi-
values of the aspect ratio. The picture on the top shows theent we have used 200 different fields. Figure 5 shows the
results for aspect ratié=2.x 10" 2, the picture in the middle
shows the results for aspect rati>=1.25< 10 3, and the
picture on the bottom shows the results for aspect ratio X 10 2. The loops on the bottom correspond to the aspect
=3.33x10 4. We see evidence of the presence of spinratio §=1.25x10 3.

FIG. 4. Time evolution ofhs vs (mzhy—mshy)/a: &= (@ 2x10°2, (b)
1.25x 1073, and(c) 3.33x10™ 4.

ever, it is clear that the spin waves are heavily damped when
the aspect ratio is reduced.

In our last experiment we have computed two hysteresis
loops using the Landau-Lifshitz equation and our effective
equation. The damping coefficient was fixedaat 0.1. Ini-
tially we apply a fieldH.=2.56Mq tilted 1° with respect to
the OX axis. Once the magnetization reaches a steady state,
we reduce the field, and repeat the operation until we reach
the fieldH.= —2.56M4. Then we repeat the operation, in-

results for two different values of the aspect ratio. The hys-
teresis loops on the top correspond to the aspect #&ti@.
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[ P CONCLUSION
86=2.x10
We have systematically studied the effective dynamics
in a ferromagnetic thin film. We found that wheéix « the
normal component is slaved to the in-plane components.
Consequently the gyromagnetic term becomes a much more
s efficient damping term for the in-plane components. The spin
<0 1 waves are unimportant for the relaxational process of the
2 magnetization field, and can be filtered out. The effective
equation thus obtained is much easier to solve numerically.
Our numerical results indicate that whére «, our effective
equation gives an accurate description of the dynamics of the
“o Effective in-plane components. Whe# is comparable toa, even
—— Landau-Lifshitz | | though the detailed dynamics are not accurately modeled by
: . the effective equation, the hysteresis loops can be calculated

-2 - HO(SM ! 1 2 using the effective equation with satisfactory accuracy.
(a) s
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