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Effective dynamics for ferromagnetic thin films
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In a ferromagnetic material, the dynamics of the relaxation process are affected by the presence of
a strong shape or material anisotropy. In this article, we systematically explore this fact to derive the
effective dynamical equation for a soft ferromagnetic thin film. We show that, as a consequence of
the interplay between shape anisotropy and damping, the gyromagnetic term is effectively also a
damping term for the in-plane components of the magnetization distribution. We validate our result
through numerical simulation of the original Landau–Lifshitz equation and our effective equation.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1371000#
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INTRODUCTION

The dynamics of the magnetization distribution in a fe
romagnetic thin film are an interesting and important pro
lem from both scientific and technological points of vie
Improvement of deposition~lithography! techniques allows
such films to be made with high precision and relative ea
Interest in using them as magnetic memory devi
~MRAMs! has given a greater incentive to study this subje
Since defects, impurities, and thermal noise play import
roles in the dynamics of the magnetization field in nanome
thick films, it also makes an ideal playground for studyi
some of the nanoscale physics.1–5

The dynamics of the magnetization distribution in a fe
romagnetic material are described by the Landau–Lifs
equation,6,7

]M

]t
52gMÃH2

ga

Ms
MÃMÃH, ~1!

whereuM u5Ms is the saturation magnetization, and is us
ally set to be a constant far from the Curie temperature;g is
the gyromagnetic ratio and is given byg5ge/(2me), where
e andme are the~positive! charge and mass of the electro
respectively, andg has values close to 2 for many ferroma
netic materials. The first term on the right-hand side is
gyromagnetic term and the second term is the damping te
a is the dimensionless damping coefficient.H is the local
field, computed from the Landau–Lifshitz free energy fun
tional:

H52
dF

dM
, ~2!

a!Electronic mail: cgarcia@princeton.edu
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F@M #5
1

2EV
H FS M

Ms
D1

Cex

Ms
2

u¹M u222m0He"M J dx

1
m0

2 E
R3

u¹Uu2 dx. ~3!

In Eq. ~3!, Cex is the exchange constant,Cexu¹M u2/Ms
2 is the

exchange interaction energy between the spins,F(M /Ms) is
the energy due to material anisotropy,m0 is the permeability
of vacuum,22m0He"M is the energy due to the extern
applied field,V is the volume occupied by the material, an
finally the last term in Eq.~3! is the energy due to the field
induced by the magnetization distribution inside the mater
This induced fieldHs52¹U can be computed by solving

DU5H ¹•M in V,

0 outside V, ~4!

together with the jump conditions

@U#50, ~5!

F]U

]n G52M "n, ~6!

at the material–vacuum interface. In Eqs.~5! and ~6! we
denote by@ # the jump of a quantity across the interface. T
vectorn represents the outward unit normal on the bound
of V.

SinceM andH have the same physical dimensions, w
can writeH5Msh, Hs5Mshs , He5Mshe , andM5Msm.
Without loss of generality, we will assume that the mater
is uniaxial, and thatF(m)5Ku(m2

21m3
2). Equation~1! is

rewritten as

]m

]t
52m0gMs mÃh2m0gMsa mÃmÃh, ~7!

where
© 2001 American Institute of Physics
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h52
Ku

m0Ms
2 ~m2e21m3e3!1

Cex

m0Ms
2
Dm1hs1he . ~8!

Here we use the notatione15(1,0,0), e25(0,1,0), ande3

5(0,0,1).
The constantm0gMs has dimensions of the reciprocal o

time (s21). Therefore we rescale in time:t→(m0gMs)
21 t,

and we rescale the spatial variablex→Lx where L is the
diameter ofV. The equation becomes

]m

]t
52mÃh2a mÃmÃh, ~9!

where

h52Q~m2e21m3e3!1hDm1hs1he . ~10!

Here we have defined the dimensionless parameterQ
5Ku /(m0Ms

2), andh5Cex/(m0Ms
2L2).

RESULTS AND DISCUSSION

In many applications, the material is a thin film. Assum
that the lateral dimensions of the material occupy thexy
plane and the thickness isd in dimensionless units (d!1).
For thin films, the energy due to surface charges is m
significant than the energy due to volume charges (5¹"m).
Then, from the viewpoint of energetics, thez component of
m, m3, must be small since it contributes to the surfa
charge. As a result, the leading order energetics in a thin
is much simplified.

To be more precise, let us assume thatm does not
change across the film. We will writem5(m8,m3), where
m85(m1 ,m2), and usef̂ to denote the Fourier transform o
f.

The energy of the self-induced field can be written
Fourier space as8,9

EM5
m0d

2 E
R2

~j•m̂8!2

uju2
~12Gd~ uju!! dj

1
m0d

2 E
R2

m̂3
2Gd~ uju! dj, ~11!

where

j5~j1 ,j2! and Gd~ uju!5
12e22pduju

2pduju
. ~12!

For uju!1/d , EM simplifies to

EM5
m0pd2

2 E
R2

~j"m̂8!2

uju
dj1

m0pd

2 E
R2

m̂3
2 dj. ~13!

Since the first term on the right-hand side contains an e
small coefficient d, m3 must be small compared wit
(m1 ,m2). For a more thorough treatment of the energetics
thin films, we refer the reader to Refs. 10 and 11.

The dynamics in a thin film are also severely co
strained. As an indication, we note that, from Eq.~13!, the
self-induced field takes the form

hs5~dL1~m1 ,m2!,dL2~m1 ,m2!,m3!. ~14!
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This motivates us to introduce the rescalingm3→d m̃3 , t

→d t̃ , h1→dh̃1, andh2→dh̃2. By using this rescaling, we
implicitly assume that both parametersQ and h, and the
external fieldhe , are small:Q;d, h;d, and uheu;d. The
Landau–Lifshitz system of equations can therefore be rew
ten as

d
]m1

] t̃
5d2 m̃3h̃22dm2h̃31a~dh̃12d~m8"h̃8!m1

2d2m̃3h̃3m1!,

d
]m2

] t̃
5d m1h̃32d2m̃3h̃11a~dh̃22d~m8"h̃8!m2

2d2m̃3h̃3m2!,

d2
]m3

] t̃
5dm2h̃12dm1h̃21a~dh̃32d2~m8"h̃8!m̃3

2d3m̃3h̃3m̃3!.

Collecting the leading order terms, assuming thatd!a,
we get

h̃35
1

a
~m1h̃22m2h̃1!, ~15!

]m1

] t̃
52m2h̃31a~ h̃12~m8"h̃8!m1!,

~16!
]m2

] t̃
5m1h̃31a~ h̃22~m8"h̃8!m2!.

To leading order,m1
21m2

251, so we can write

m2h̃35
1

a
m2~m1h̃22m2h̃1!52

1

a
~ h̃12~m8"h̃8!m1!,

~17!

m1h̃35
1

a
~ h̃22~m8"h̃8!m2!.

Thus, the third component can be effectively eliminated fro
the equations.

Going back to the time scalet, we have

]m1

]t
5dS 1

a
1a D ~ h̃12~m1h̃11m2h̃2!m1!,

~18!
]m2

]t
5dS 1

a
1a D ~ h̃22~m1h̃11m2h̃2!m2!.

Equation ~18! is the gradient flow of the in-plane compo
nentsm85(m1 ,m2,0) associated with the reduced energy

F@m8#5
1

2EV8
$Cexu¹m8u21F~m8!22he"m8% dx

1
1

2ER3
u¹uu2 dx. ~19!

This analysis reveals several interesting facts about
films. Equation~15! indicates that, in a thin film, the dynam
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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ics of the normal component of the magnetization,m3, are
slaved by the in-plane components. As a result, the gyrom
netic term is effectively also a dissipative term for the
plane components. Equation~18! shows the seemingly para
doxical fact that the dynamics in very thin films can
accelerated by decreasing the value of the damping co
cient a. One of the advantages of our effective Eq.~18! is
that it is much simpler to solve numerically than the fu
Landau–Lifshitz equation. The time stepping can be p
formed with the methods described in Refs. 12 and 13.
complexity of these methods is comparable to that of solv
scalar heat equations implicitly, and the time step size
quired for stability is independent of the grid size.

Going back to the general situation described by
original Landau–Lifshitz equation~1!, the first term on the
right-hand side is the conservative gyromagnetic term. T
second term is the damping term. Typicallya!1 (a
'0.01– 0.1) so the conservative term dominates. Our pr
ous argument suggests that the effective dynamic equa
~18! is valid whend!a. In that case, the small dissipativ
term triggers a large dissipative effect from the conserva
gyromagnetic term~with coefficient 1/a) for the in-plane
components because of the severe geometric constr
However, for typical samples used in MRAM application
we often haved'a.

NUMERICAL EXPERIMENTS

In order to assess the validity of our effective equat
~18! in different parameter regimes, we carried out dire
micromagnetics simulations of the Landau–Lifshitz equ
tions. We used the following values of the parameters
model a permalloy film:

m054p31027 N/A2,

g51.7631011 T21 s21,

Ms58.03105 A/m,

Ku55.03102 J/m3,

Cex51.3310211 J/m.

We compute the effective field by approximating t
magnetization using piecewise bilinear functions. For
time stepping we have used a fourth order Runge–K
method. In our simulations, we have used 128 and 256
points in each direction, which is enough to resolve the
main walls.

In our first experiment we compare the solution to t
equations for different values of the aspect ratio,d, fixing a
at 0.1. A sketch of the initial and final configuration is show
in Fig. 1. In Figs. 2 and 3 we present images at differ
times during the relaxation process with and without an
ternal field. In these images, we show the divergence of
in-plane components (m1 ,m2) on a gray scale. The movie
are available online, and can be viewed at http
www.math.princeton.edu/;cgarcia. The first and third col
umns are the results of the full simulation of the origin
Landau–Lifshitz equation, and the second and fourth c
umns are the results of our effective equation. The results
Downloaded 13 Sep 2001 to 128.111.88.187. Redistribution subject to A
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the Landau–Lifshitz equation and our effective equation
an aspect ratiod52.31022 are presented in the first tw
columns for comparison. In the other two columns we co
pare the results for an aspect ratiod51.2531023 (16 times
smaller!. We clearly see the presence of fast moving s
waves in the simulations of the full Landau–Lifshitz equ
tion for the two values of the aspect ratio. These spin wa
are more evident whend52.31022. In the effective equa-
tion there are no such waves, but the overall relaxatio
dynamics for both values ofd seem to be correctly capture
by Eq. ~18!. Certainly closer agreement is found for th
smaller value ofd. Therefore, the effective dynamics d

FIG. 1. Initial and final configurations in Figs. 2 and 3. The picture
the left is the initial configuration. The picture in the middle is the fin
configuration when there is no applied field. The picture on the righ
the final configuration when there is an applied fieldhe

52d@cos(p/180),sin(p/180),0#.

FIG. 2. Simulation of the full Landau–Lifshitz dynamics and the effecti
dynamics. The damping coefficient is fixed ata50.1. The two columns on
the left correspond to the Landau–Lifshitz dynamics and our effective
namic equation ford5231022. The frames correspond to the followin
times: t5 ~a! 0.10, ~b! 0.15, ~c! 0.23, ~d! 0.60, and~e! 1.0 ns. The two
columns on the right correspond tod51.2531023. The frames correspond
to the following times:t5 ~f! 0.10,~g! 0.25,~h! 0.50,~i! 1.0, and~j! 3.0 ns.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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what is expected: filter out the fast moving spin waves wh
are difficult to resolve numerically, but capture correctly t
slower relaxational dynamics. The observation that s
waves are not important for the relaxational process m
only be valid for the case ofd!a. In the opposite regime
whend@a, the opposite has been reported, namely, the s
waves are the mechanism for damping and relaxation.14,15

In our second experiment we have focused on the t
history of one single magnetic spin in order to assess
validity of Eq. ~15!, that is,

h3'
1

a
~m1h22m2h1!, for a@d. ~20!

We have solved the full Landau–Lifshitz equation~1!
for several values of the aspect ratiod, fixing a at 0.1. In
Fig. 4 we plot the time history of the two quantities,h3, and
(m2h12m1h2)/a, at one grid location, for three differen
values of the aspect ratio. The picture on the top shows
results for aspect ratiod52.31022, the picture in the middle
shows the results for aspect ratiod51.2531023, and the
picture on the bottom shows the results for aspect ratid
53.3331024. We see evidence of the presence of s

FIG. 3. Simulation of the full Landau–Lifshitz dynamics and the effect
dynamics. The damping coefficient is fixed ata50.1. The applied field is
he52d@cos(p/180),sin(p/180)#. The two columns on the left correspond
the Landau–Lifshitz dynamics and our effective dynamic equation fod
5231022. The frames correspond to the following times:t5 ~a! 0.15, ~b!
0.45, ~c! 1.1, ~d! 1.6, and~e! 1.8 ns. The two columns on the right corre
spond tod51.2531023 for times: t5 ~f! 0.15, ~g! 0.65, ~h! 1.75, ~i! 2.10,
and ~j! 21.0 ns.
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waves for all three different values of the aspect ratio. Ho
ever, it is clear that the spin waves are heavily damped w
the aspect ratio is reduced.

In our last experiment we have computed two hystere
loops using the Landau–Lifshitz equation and our effect
equation. The damping coefficient was fixed ata50.1. Ini-
tially we apply a fieldHe52.5dMs tilted 1° with respect to
the OX axis. Once the magnetization reaches a steady s
we reduce the field, and repeat the operation until we re
the fieldHe522.5dMs . Then we repeat the operation, in
creasing the field, in order to close the loop. For our exp
ment we have used 200 different fields. Figure 5 shows
results for two different values of the aspect ratio. The h
teresis loops on the top correspond to the aspect ratiod52.
31022. The loops on the bottom correspond to the asp
ratio d51.2531023.

FIG. 4. Time evolution ofh3 vs (m2h12m1h2)/a: d5 ~a! 231022, ~b!
1.2531023, and~c! 3.3331024.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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We can see that the loops corresponding to the Land
Lifshitz equation are almost identical to the loops obtain
from the effective equation for the same value of the asp
ratio. From this experiment, we can see that the two eq
tions have the same steady states, which again corrobo
the previous statement that the effective dynamics filter
the spin waves, but capture the long term relaxation dyn
ics correctly.

FIG. 5. Hysteresis loops obtained for each of the equations.~a! d52
31022 and ~b! d51.2531023.
Downloaded 13 Sep 2001 to 128.111.88.187. Redistribution subject to A
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CONCLUSION

We have systematically studied the effective dynam
in a ferromagnetic thin film. We found that whend!a the
normal component is slaved to the in-plane compone
Consequently the gyromagnetic term becomes a much m
efficient damping term for the in-plane components. The s
waves are unimportant for the relaxational process of
magnetization field, and can be filtered out. The effect
equation thus obtained is much easier to solve numerica
Our numerical results indicate that whend!a, our effective
equation gives an accurate description of the dynamics of
in-plane components. Whend is comparable toa, even
though the detailed dynamics are not accurately modeled
the effective equation, the hysteresis loops can be calcul
using the effective equation with satisfactory accuracy.
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