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Abstract. In this short note we clarify some issues regarding the existence of mini-
mizers for the Thomas-Fermi-von Weiszacker energy functional in orbital-free density
functional theory, when the Wang-Teter corrections are included.

1 Introduction

In [1] it was claimed that there always exists a minimizer; however, the statement of
Theorem 2.1 is incomplete. In this note we present the full statement, with a detailed
proof.

The theorem stated in [1] holds as long as the number of electrons is below a certain
critical value. The correct statement for the theorem in [1] is:

Theorem 1.1 (Existence of minimizers). Given v ∈ C∞(Ω), and KWT ∈ L2
loc(R3),

consider the problem
inf
u∈B

F [u], (1.1)

where F and B are

F [u] =
1
2

∫
Ω
|∇u|2 − 7CTF N2/3

25

∫
Ω

u10/3 +
4CTF N2/3

5

∫
Ω
|u|5/3

(
KWT ∗ |u|5/3

)
+

N

2

∫
Ω

u2

(
1
|x|

∗ u2

)
− 3

4

(
3N

π

)1/3 ∫
Ω

u8/3 +
∫

Ω
u2ε(Nu2) +

∫
Ω

v(x)u2(x) dx, (1.2)

and

B =
{

u ∈ H1
0 (Ω)

∣∣∣∣u ≥ 0,

∫
Ω

u2 = 1
}

. (1.3)
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In (1.2), the set Ω is open and bounded, and ε is defined as

ε(rs) =

{
γ

1+β1
√

rs+β2rs
, rs ≥ 1,

A ln(rs) + B + Crs ln(rs) + Drs, rs ≤ 1,
(1.4)

where rs =
(

3
4πNu2

)1/3; the parameters used are γ = −0.1423, β1 = 1.0529, β2 = 0.3334,
A = 0.0311, B = −0.048, and C = 2.019151940622 × 10−3 and D = −1.163206637891 ×
10−2 are chosen so that ε(r) and ε′(r) are continuous at r = 1 [6].

Then, there exists N0 > 0 such that:

1. If N < N0 then ∃u∗ ∈ B such that

F [u∗] = min
u∈B

F [u]. (1.5)

2. If N > N0 then
inf
u∈B

F [u] = −∞. (1.6)

Proof: The second part of the theorem was proved in [2,3]. We outline the proof here for
completeness. Consider a compactly supported function u0 ∈ C∞

0 (Ω), such that∫
Ω

u2
0 = 1. (1.7)

Given x0 ∈ Ω, ∃δ0 > 0 such that B(x0, δ0) ⊂ Ω. Consider the rescaling

uδ(x) =
1

δ3/2
u0

(
x− x0

δ

)
, 0 < δ < δ0. (1.8)

Then uδ ∈ B, and

F [uδ] =
1
δ2

(
1
2

∫
Ω
|∇u0|2 −

7CTF N2/3

25

∫
Ω

u
10/3
0

)
+ O

(
1
δ

)
. (1.9)

Define

A0 = inf
u∈H1

0 (Ω), ‖u‖2=1

∫
Ω |∇u|2∫
Ω u10/3

> 0. (1.10)

Then if A0/2 < 7CTF N2/3

25 , we can choose u0 so that the leading term in (1.9) is negative,
and when δ → 0, the desired result follows.

For the existence of minimizers, assume that N is such that such that A0/2 > 7CTF N2/3

25 .
By lemma 1.1, there exist C > 0, δ > 0 such that

F [u] ≥ 1
2

∫
Ω
|∇u|2 −

(
7CTF N2/3

25
+ δ

)∫
Ω

u10/3 − C

≥

(
1
2
− 1

A0

(
7CTF N2/3

25
+ δ

))∫
Ω
|∇u|2 ≥ τ

∫
Ω
|∇u|2 − C, (1.11)
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where τ > 0. Therefore the functional is coercive, and the result follows from now from
standard arguments in the Calculus of Variations [4], involving the Sobolev Embedding,
and the Rellich-Kondrachov compactness theorem. �

Remark 1.1. Note that given Ω ⊂ R3, then

0 < A0 = inf
u∈A

∫
Ω |∇u|2∫
Ω u10/3

, (1.12)

where

A =
{

u ∈ H1
0 (Ω)|u ≥ 0,

∫
Ω

u2 = 1
}

. (1.13)

By the Gagliardo-Nirenberg inequality, ∃C1 > 0 such that(∫
Ω

u6

)1/3

≤ C1

∫
Ω
|∇u|2. (1.14)

By the Riesz-Thorin theorem, since u ∈ L2(Ω) ∩ L6(Ω), and

3
10

=
θ

2
+

1− θ

6
, (1.15)

with θ = 2/5, we get (∫
Ω

u10/3

)3/10

≤
(∫

Ω
u2

)θ/2(∫
Ω

u6

)(1−θ)/6

, (1.16)

and therefore, since ‖u‖2 = 1,∫
Ω

u10/3 ≤
(∫

Ω
u6

)5(1−θ)/9

=
(∫

Ω
u6

)1/3

≤ C1

∫
Ω
|∇u|2. (1.17)

Therefore,

inf
u∈A

∫
Ω |∇u|2∫
Ω u10/3

≥ C−1
1 > 0. (1.18)

In [1] it was proved that KWT ∈ L2(R3). In the following lemma we establish the
necessary inequalities to prove the coercivity of energy functional (1.2).

Lemma 1.1. Assume KWT ∈ L2(R3), v ∈ L∞(Ω), and ε is defined as in 1.4. Then, there
exist constants Ci, i = 1, . . . , 5, dependent only on the domain Ω and on N , such that for
all u ∈ H1

0 (Ω) satisfying ‖u‖2 = 1,

1. ∣∣∣∣∫
Ω
|u|5/3

(
KWT ∗ |u|5/3

)∣∣∣∣ ≤ C1‖u5/3‖2‖u5/3‖1‖KWT ‖2. (1.19)
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2. ∣∣∣∣∫
Ω

(
u2 ∗ 1

|x|

)
u2

∣∣∣∣ ≤ C2‖u2‖5/6
5/3‖u‖

7/3
2 . (1.20)

3. ∣∣∣∣∫
Ω

u8/3

∣∣∣∣ ≤ C3‖u5/3‖2‖u‖2. (1.21)

4. ∣∣∣∣∫
Ω

u2ε(Nu2)
∣∣∣∣ ≤ C4 + C5

(∫
Ω
|u|10/3

)3/4

. (1.22)

Proof:

1. Since KWT ∈ L2, by the Cauchy-Schwarz inequality, followed by Young’s inequality:∣∣∣∣∫
Ω
|u|5/3

(
KWT ∗ |u|5/3

)∣∣∣∣ ≤ ‖u5/3‖2‖KWT ∗ |u|5/3‖2 ≤ C1‖u5/3‖2‖KWT ‖2‖u5/3‖1.

(1.23)
Note that since ‖u‖2 = 1, by Hölder’s inequality, ‖u5/3‖1 ≤ |Ω|1/6.

2. This inequality was proved in [5] (Theorem IV.1, page 75).

3. This follows from the Cauchy-Schwarz inequality:∣∣∣∣∫
Ω

u8/3

∣∣∣∣ = ∣∣∣∣∫
Ω

u5/3u

∣∣∣∣ ≤ C‖u5/3‖2‖u‖2. (1.24)

4. From the definition of ε, we get that

∣∣∣∣∫
Ω

u2ε(Nu2)
∣∣∣∣ ≤ C1+C̃2

∣∣∣∣∣
∫
|u|≥1

u2 log |u|

∣∣∣∣∣ ≤ C1+Ĉ2

∣∣∣∣∫
Ω
|u|5/2

∣∣∣∣ ≤ C1+C2

(∫
Ω
|u|10/3

)3/4

.

(1.25)

This concludes the proof.
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