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Abstract

Numerical simulation has become an important tool in the study of

both static and dynamic issues in ferromagnetic materials. We present a

review of some of the recent advances in numerical Micromagnetics.
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1. Introduction

A ferromagnetic material is one that possesses spontaneous magnetization.
The magnetization in ferromagnetic materials can exhibit intricate domain
structures, characterized by areas where the magnetization varies slowly,
separated by sharp transition layers, where the orientation of the magnetization
changes on a much shorter lengthscale [1, 2]. A first attempt to explain these
domain structures was carried out by Weiss [3], who introduced the idea of
a molecular field responsible for the orientation of the magnetization. The
quantum mechanical origin of this molecular field was discovered by Heisenberg
[4], who explained it as an exchange field that tends to align the spins.

Ferromagnetic materials are typically bistable, and one can switch between
different configurations using a magnetic field. For this reason, the main
application of ferromagnetic materials has been in the magnetic recording
industry. With the discovery of giant magneto resistance (GMR) and interlayer
exchange coupling, new applications of layered magnetic structures are being
considered [5, 6, 7]. Multilayers have good permanent magnet properties, and
in particular, a high coercive field and approximately rectangular hysteresis
loop [8]. For that reason multilayers are an integral part of magnetic
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memories (MRAMs), and have been one of the most important applications
of ferromagnetic thin films in the past few years.

In Micromagnetics, the quantity of interest is the magnetization (M); ma-
thematically, it is a vector field of constant length Ms. In this article we
will use physical units in the international system (S.I.). The fundamental
dimensions used will be that of mass (M), length (L), time (T), and current
(A). With this convention, the magnetization has units of A/m, and dimensions
[M] = [Ms] = AL−1. The S.I. unit for force is the Newton (N), and for magnetic
induction the Tesla (T).

The domain structures observed in ferromagnetic materials are understood
as either local, or global minimizers of the Landau-Lifshitz energy [1], which is
the sum of several contributions:

FLL[M] = Fa[M] + Fe[M] + Fs[M] + FZ [M]. (1)

For a magnetic sample occupying a domain Ω ⊂ R
3, the different contributions

to the energy in (1) are:

1. Anisotropy energy: The electronic structure of the underlying
crystalline lattice induces a preferred orientation for the spins. This is
described by a term of the form

Fa[M] =

∫

Ω

Φ

(
M

Ms

)
dx,

where Φ : S2 → R
+ is a smooth (C∞) function. In the case of a uniaxial

material, there is a preferred axis, say OX, in which case the anisotropy
energy takes the form

Fa[M] =
Ku

M2
s

∫

Ω

(
M2

2 +M2
3

)
dx,

where Ku is a material parameter (in units of J/m3, and dimensions
[Ku] = ML−1T−2).

Although only uniaxial materials will be consider in this review, materials
can present other types of crystalline anisotropy, such as cubic.

2. Exchange Energy: The fundamental property of ferromagnetic
materials is that the spins experience the presence of an exchange field
that favors alignment along a common direction. This is described by an
energy term of the form

Fe[M] =
Cex
M2
s

∫

Ω

|∇M|2 dx.

The exchange constant Cex has units of J/m, and dimensions [Cex] =
MLT−2.
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3. Stray Field Energy: A magnetized sample generates a magnetic field,
which can be obtained by solving the Maxwell equations [9]. We refer to
this magnetic field as stray field, or self-induced field. In the absence of
electrical currents and charges, the Maxwell equations for the stray field,
Hs, and the magnetic induction, B, reduce to

div B = 0

∇× Hs = 0.

The magnetic field, magnetic induction, and magnetization are related by

B = µ0 (Hs + M) . (2)

In (2), µ0 is the magnetic permeability of vacuum, which has a fixed value
of µ0 = 4π × 10−7N/A2, and dimensions [µ0] = MLT−2A−2.

From the second equation in (2) it follows that Hs = −∇U for some
scalar function U , usually referred to as magnetostatic potential. The
first equation in (2) may therefore be rewritten as

div (−∇U + M) = 0, x ∈ R
3, (3)

understood in the sense of distributions, i.e., U ∈ H1(R3) satisfies
∫

R3

∇U · ∇v =

∫

Ω

M · ∇v, ∀v ∈ H1(R3). (4)

The stray field (or self-induced) energy is

Fs =
µ0

2

∫

R3

|∇U |2 dx. (5)

From (4) with v = U , it follows that

Fs[M] =
µ0

2

∫

R3

|∇U |2 dx =
µ0

2

∫

Ω

M · ∇U dx = −µ0

2

∫

Ω

Hs · M. (6)

Equation (4) can be rewritten as

∆U =

{
∇ · M in Ω,
0 outside Ω,

(7)

together with the jump conditions

[U ]|∂Ω = 0, (8)
[
∂U

∂ν

]

|∂Ω

= −M · ν. (9)

Here [v]|∂Ω represents the jump of v at the boundary of Ω:

[v]|∂Ω (x) = lim
y→x

y∈Ω̄c

v(y) − lim
y→x

y∈Ω

v(y),
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and ν is the unit outward normal on ∂Ω. The equation can be solved
explicitly [9], and the solution is given by

U(x) =

∫

Ω

∇N(x − y) · M(y) dy. (10)

Here N(x) = − 1
4π

1
|x| is the Newtonian potential.

Using Plancherel’s Identity [10] the stray field energy can be written in
Fourier space as

Fs[M] =
µ0

2

∫

R3

(ξ · M̂)2

|ξ|2 dξ. (11)

From equation (7)-(9) or (11), we can see that the stray field energy can
be thought of as a soft penalization of both the divergence of M in the
bulk, and the normal component of M on the boundary of the domain.

4. Zeeman Energy: In the presence of an external magnetic field He, the
magnetization tends to align with it. This translates into an energy term
of the form

FZ [M] = −µ0

∫

Ω

He · M dx. (12)

Nota 1 Changes in the magnetization may produce deformations in the
crystalline lattice; and vice-versa. A deformation in a ferromagnetic material
can induce changes in the magnetization distribution, a phenomenon known as
Magnetostriction [11, 12, 13, 14]. This ability to transform magnetic energy
into kinetic energy makes ferromagnetic materials good candidates for sensors
and actuators. These elastic effects, however, will not be considered here.

In what follows, we consider the Landau-Lifshitz energy

FLL[M] =
Ku

M2
s

∫

Ω

(
M2

2 +M2
3

)
+
Cex
M2
s

∫

Ω

|∇M|2 +
µ0

2

∫

R3

|∇U |2 −µ0

∫

Ω

M ·He.

(13)
The energy landscape of (13) is quite rich, and by now the structure of
minimizers is fairly well understood [1, 15, 16, 17, 18, 19, 20, 21, 22, 23].
Examples of minimizers of (13) are shown in figures 1 and 2.

The relaxation process of the magnetization distribution in a ferromagnetic
material is described by the Landau-Lifshitz equation [1],

∂M

∂t
= − µ0γ

1 + α2
M ×H− µ0γα

Ms(1 + α2)
M × (M ×H) , (14)

where |M| = Ms is the saturation magnetization, and is usually set to be a
constant far from the Curie temperature; γ is the gyromagnetic ratio, and the
first term on the right hand side is the gyromagnetic term; α is the dimensionless
damping coefficient, and the second term on the right hand side is the damping
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Physical Parameters for Permalloy

Ku 100 J/m3

Cex 1.3 × 10−11 J/m
Ms 8 × 105 A/m
γ 1.76 × 1011 (Ts)−1

α 0.01

Table 1: Typical values of the physical parameters in the Landau-Lifshitz
equation (14) for Permalloy. Permalloy is an alloy of Nickel (80%) and Iron
(20%), frequently used in magnetic storage devices.

term; H is the local or effective field, computed from the Landau-Lifshitz free
energy functional:

H = −δFLL
δM

. (15)

Using the expression (13) for the free energy functional, we get

H = −2Ku

M2
s

(M2e2 +M3e3) +
2Cex
M2
s

∆M − µ0∇U + µ0He. (16)

Here the notation e2 = (0, 1, 0), and e3 = (0, 0, 1) was used. Typical values for
the physical parameters in (13) are included in Table 1.

The Landau-Lifshitz equation (14) can be written equivalently as

∂M

∂t
= −µ0γM ×H +

α

Ms

M × ∂M

∂t
, (17)

known as the Landau-Lifshitz-Gilbert equation [24]. Equations (14) and
(17) must be supplemented with initial (M(x, 0) = M0(x)), and boundary
conditions:

∂M

∂ν
= 0, x ∈ ∂Ω, (18)

where ν denotes the outward unit normal on ∂Ω.
The gyromagnetic term in the Landau-Lifshitz equation (14) is a

conservative term, whereas the damping term is dissipative. In the absence
of damping (α = 0), equation (14) is related to the symplectic flow of harmonic
maps [25]. This equation is also known as Schrödinger map equation because of
its connection to the nonlinear Schrödinger equation found by Lakshmanan and
Nakamura [26]. As a result, some of the work in that area has been connected
to micromagnetics [27, 28, 29, 30, 31, 32, 33, 34].

In the high damping limit (α → ∞), the equation is related to the heat
flow for harmonic maps [35, 36, 37]. In recent years there has been a lot of
work regarding the existence and regularity of solutions to the Landau-Lifshitz
equation (14) [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50].

Equation (14) describes the dynamics of the magnetization at O◦K. At
nonzero temperature, the effective field is customarily added a stochastic term
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[51, 52, 53]. The Langevin dynamical equations are

∂M

∂t
= − µ0γ

1 + α2
M ×

(
H +

√
σẆ

)
− µ0γα

Ms(1 + α2)
M ×

(
M ×

(
H +

√
σẆ

))
,

(19)
where σ is determined by the fluctuation-dissipation theorem [54, 51, 52]:

σ =
2αkBT

µ2
0γMs

. (20)

In (19), Ẇ represents the effect of thermal fluctuations, and it is uncorrelated,
independent, Gaussian white noise, characterized by the moments

〈
Ẇi(t)

〉
= 0, and

〈
Ẇj
i (t)Ẇ l

k(t
′)
〉

= δikδjlδ(t− t′). (21)

In (21),
〈
v
〉

represents the expected value of the random variable v; kB is the
Boltzmann constant (kB = 1.38054 × 10−23 Joules/degree), T is the absolute
temperature, and γ is the gyromagnetic ratio. The subindices in Ẇ represent
different spatial locations, and the superindices represent each vector component
of Ẇ. Equation (19) must be understood in the Stratonovich sense [55, 52]. We
show in Appendix A that when the equation is interpreted in the Ito sense, the
length of the magnetization is not preserved.

Understanding the long term dynamics of the Landau-Lifshitz system (14)
or (19) is of practical interest in the design of effective mechanisms for
magnetization reversal in computer memory cells [56]. In the simulation of
the magnetization reversal process, it is important to be able to resolve the
different small length scales involved, in particular, magnetic domain walls,
and magnetic vortices, since these are responsible for the switching anomalies
observed in experiments with submicron patterned NiFe arrays [57, 58].

In this article we present a review of the new developments in the numerical
simulation of the Landau-Lifshitz equation in the presence and absence of
thermal effects.

1.1. Dimensionless variables

For completeness, we present a non-dimensionalization of the Landau-
Lifshitz equation, which will be used in what follows. The Landau-Lifshitz
energy can be written in dimensionless variables by rescaling M = Msm,
Hs = Mshs, U = Msu, He = Mshe, x = Lx′, and FLL = (µ0M

2
s )F ′

LL:

F ′
LL[m] = q

∫

Ω′

(
m2

2 +m2
3

)
dx′ + ε

∫

Ω′

|∇m|2 +
1

2

∫

R3

|∇u|2 dx′ −
∫

Ω′

he ·m dx′,

(22)
where q = 2Ku/(µ0M

2
s ) and ε = 2Cex/(µ0M

2
sL

2) are now dimensionless.
Upon rescaling time, t = (1 + α2)(µ0γMs)

−1t′, we can write the Landau-
Lifshitz equation as

∂m

∂t′
= −m × h − αm × m × h, (23)
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where
h = −q (m2e2 +m3e3) + ε∆m −∇u+ he. (24)

The Landau-Lifshitz-Gilbert equation can be written as

∂m

∂t̃
= −m × h + αm × ∂m

∂t̃
, (25)

where we have done a different rescaling of time: t = (µ0γMs)
−1t̃.

The Stochastic Landau-Lifshitz equation can be written in dimensionless
variables as

∂m

∂t
= −m × (h +

√
ηω̇) − αm × m × (h +

√
ηω̇), (26)

where

η =
2αkBT

µ0M2
sL

3(1 + α2)
, (27)

and ω̇ is uncorrelated, independent, Gaussian white noise. The parameter ε
in (27) represents the ratio of thermal energy (∼ kBT ), to magnetic energy
(∼ µ0M

2
sL

3). It follows that as the dimensions of the magnetic domain
are reduced, thermal effects become more important. This has important
technological implications, as it may hinder the development of highly dense
nano-scale megnetic devices.

2. Time-stepping Schemes for the Landau-Lifshitz Equa-

tion

The dynamics of the magnetization distribution in a ferromagnetic thin
film is an interesting and important problem from both a scientific and a
technological point of view. Customarily, the main interest in these films
has been their application in the magnetic recording industry. More recently,
interest on using them as magnetic memory devices (MRAM) has given a greater
incentive to study this subject.

2.1. Method of Lines

A traditional method for the numerical simulation of a partial differential
equation is the Method of Lines. The right hand side of equation (14) is
discretized in space. To fix ideas, we will only consider finite difference
approximations, although spectral methods or finite elements can be used as
well. Let us denote by M = {mi}i∈I the discrete set of unknowns, which
represent the value of the magnetization at the grid points. Let us denote the
discretization of the right hand side of equation (23) by Fh(M, t):

(Fh(M, t))i = −mi × hi − αmi × (mi × hi), (28)

where
hi = −q (mi,2e2 +mi,3e3) + ε∆hmi −∇ui + he. (29)
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In (29), we consider the standard approximation to the Laplacian using centered
finite differences.

Upon spatial discretization, the resulting system of ordinary differential
equations is

dM

dt
= Fh(M, t). (30)

The system (30) can now be integrated numerically. Explicit numerical schemes,
such as fourth order Runge-Kutta, or predictor-corrector schemes, with some
kind of adaptive time stepping procedure, are among the most commonly used
methods for the simulation of the Landau-Lifshitz equation. The numerical
integration of equation (30) using the Fourth order Runge-Kutta method
proceeds as follows: Give the approximation Mn at time tn, define

K1 = F(Mn, tn),

K2 = F

(
Mn +

∆t

2
K1, tn +

∆t

2

)
,

K3 = F

(
Mn +

∆t

2
K2, tn +

∆t

2

)
,

K4 = F

(
Mn +

∆t

2
K3, tn + ∆t

)
.

The magnetization at time tn+1 is approximated by

M∗ = Mn +
∆t

6
(K1 + 2K2 + 2K3 + K4) , (31)

Mn+1 =
M∗

|M∗| . (32)

The normalization step (32) is necessary to preserve the length of the
magnetization vector at each grid point. If this step is omitted, the length
constraint is satisfied only to within the temporal accuracy of the numerical
method.

Although explicit schemes may achieve high order of accuracy both in space
and time, the time step size is severely constrained by the stability of the
numerical scheme. For physical constants characteristic of Permalloy, with a cell
size ∆x = 0.004µm (256 grid points in a 1µm long sample), and using fourth
order Runge-Kutta, a time step roughly of the order ∆t ≈ .25 picoseconds is
needed for numerical stability. If the cell size is decreased by a factor of 10, the
time step ∆t must be reduced by a factor of 100.

In order to overcome the stability constraint of explicit schemes, one usually
resorts to implicit schemes, such as the Backward Euler method described in
[59]. However, due to the strong nonlinearities present in both the gyromagnetic
and damping terms in the Landau-Lifshitz equation (14), a direct implicit
discretization of the system is not efficient and is difficult to implement. To
illustrate the procedure, consider only the Laplacian term in the Landau-Lifshitz
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equation (14):
∂m

∂t
= −m × ∆m − m × m × ∆m. (33)

The Backward Euler method is

mn+1 − mn

∆t
= −mn+1 × ∆hm

n+1 − mn+1 × mn+1 × ∆hm
n+1. (34)

In order to advance the magnetization in the Backward Euler method, the
nonlinear system of equations (34) must be solved at each time step. This
difficulty can be ameliorated by a semi-implicit discretization such as

mn+1 − mn

∆t
= −mn × ∆hm

n+1 − mn × mn × ∆hm
n+1. (35)

In (35), the system of equations that has to be solved at each time-step is linear,
but the coefficients change between time-steps.

Both (34) and (35) are first order discretizations in time. A second order
approximation can be obtained using a Crank-Nicolson discretization. For
simplicity, we consider only the case when damping is absent:

mn+1 − mn

∆t
= −1

2

(
mn+1 × ∆hm

n+1 + mn × ∆hm
n
)
. (36)

An alternative second order approximation of this type is [60]:

mn+1 − mn

∆t
= −1

2

(
mn × ∆hm

n+1 + mn+1 × ∆hm
n
)
. (37)

The time stepping (37) only requires the solution of linear systems of equations,
and not nonlinear systems, as in (36).

Higher order approximations can be achieved using Backward Differentiation
Formula [61].

2.2. Semi-Analytic integration

In all the numerical methods described above, the unit length constraint on
the magnetization vector must be imposed by performing a projection of the
intermediate values, as in (32). Given that the length of the magnetization
is preserved by the Landau-Lifshitz equations, it may be desirable that the
numerical method employed also preserve it. In [62], this was achieved by using
semi-analytical integration of equation (30), which can be written as

dmi

dt
= −mi × hni − αmi × (mi × hni ), (38)

mi(tn) = mn
i . (39)

In (38), the effective field, hn, is kept constant in the interval [tn, tn+1], which
allows explicit integration of equation (38) between tn and tn+1. The explicit
expression for m(tn+1) follows from the two following observations:
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1. Given two vectors m,h ∈ R
3, we have the following vector identity:

m =
1

|h|2 ((m,h)h + h × (m × h)) , (40)

i.e., m is completely determined by (m,h), and m × h.

2. The scalar (m,h) and the vector m×h satisfy simple ordinary differential
equations that can be solved explicitly.

Therefore we only need to obtain an expression for (m,h) and m × h, which
are:

(mn+1,hn) = |h| (m
n,hn) cosh(α|hn|(∆t)) + |hn| senh(α|hn|(∆t))

(mn,hn) senh(α|hn|(∆t)) + |hn| cosh(α|hn|(∆t)) , (41)

and

mn+1 × hn = ϕ(∆t)RT ·




1 0 0
0 cos(|hn|∆t) − sen(|hn|∆t)
0 sen(|hn|∆t) cos(|hn|∆t)


 · R · mn × hn,

(42)
where we have defined

ϕ(∆t) = e−α
R tn+1

tn
(m,h)(t) dt =

1
(mn,hn)

|hn| senh(α|hn|∆t) + cosh(α|hn|∆t)
. (43)

The matrix R in (42) is an orthonormal matrix which preserves the orientation,
and such that R · h = |h|e1:

R =
1

|h|




h1 h2 h3

0 h3√
h2
2
+h2

3

− h2√
h2
2
+h2

3

−
√
h2

2 + h2
3

h1h2√
h2
2
+h2

3

h1h3√
h2
2
+h2

3


 , (44)

or R = h

|h|I, if h2 = h3 = 0.

Give mn, hn is computed from (24), and mn+1 is given by

mn+1 =
1

|hn|2 ((mn,hn)hn + hn × (mn × hn)) . (45)

The method is first order accurate in time, and explicit. Therefore, it suffers
from the same time step constraints as the Runge-Kutta method described
earlier. However, the shape of the time step (45) allows for a natural form of
time step control [62]. This method can also be seen as an example of more
general geometric integrators to be discussed in section 2.3.
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2.3. Geometric Integration

Geometric integrators are methods specially designed to preserve one or
more of the geometric properties of the system under consideration [63]. An
example of geometric integrators are symplectic methods [64, 65], which are
designed to preserve the symplectic structure of the equation.

The use of geometric integrators for the Landau-Lifshitz equation has been
explored in [66, 67]. To illustrate the method, we rewrite the Landau-Lifshitz
equation as

dmi

dt
= S(pi) · mi, (46)

where
pi = hi + αmi × hi, (47)

and

S(p) =




0 −p3 p2

p3 0 −p1

−p2 p1 0


 , ∀p ∈ R

3. (48)

If we fix p at time tn, and solve equation (46) between tn and tn+1, we get

mn+1
i = exp (S(pi)∆t) · mn

i , (49)

which is exactly (45). Since Spi is skew-symmetric, the exponential exp {Spit}
is an orthonormal matrix, and therefore the length of the magnetization is
automatically preserved by the method.

The exponential matrix can be computed using the Rodrigues formula [68]:

exp {S(p)} = I +
sen(‖p‖)

‖p‖ S(p) +
1 − cos(‖p‖)

‖p‖2
S(p)2, (50)

which follows from the fact that S(p)3 = −‖p‖2S(p). In [66], geometric
methods of first, second, and fourth order accuracy were constructed for the
Landau-Lifshitz equation.

2.4. Gauss-Seidel Projection Method

The two main difficulties in the time-stepping of the Landau-Lifshitz
equation are the stiffness of the equation, and the nonlinearity. The stiffness of
the equation can be handled by using an implicit time stepping procedure,
and the nonlinearity is what makes this procedure difficult or impractical.
Both issues where addressed in [69], where the Gauss-Seidel Projection Method
(GSPM) was developed.

Because of the nature of the equation, the gyromagnetic term and the
damping term require different treatment. To illustrate the method, we again
consider only the Laplacian term in the Landau-Lifshitz equation (33).

When only the damping term is present, equation (33) becomes

∂m

∂t
= −m × (m × ∆m) = ∆m + |∇m|2m. (51)
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This equation describes the heat flow for harmonic maps. In [70], a simple
projection scheme was introduced for this equation. This scheme was shown
to be unconditionally stable and more efficient than other schemes used for the
simulation of equation (51).

In order to motivate the GSPM, consider equation

∂m

∂t
= −m × ∆m. (52)

To overcome the nonlinearity of the equation, consider a simple fractional step
scheme:

m∗ − mn

∆t
= ∆hm

∗

mn+1 = mn − mn × m∗ (53)

or
mn+1 = mn − mn × (I − ∆t∆h)

−1mn. (54)

Here I is the identity matrix, and ∆h represents an approximation to the
Laplacian.

The advantage of the scheme (54) is that the implicit step is now linear,
comparable to solving heat equations implicitly, and is easy to implement. It
is easy to check that the scheme (54) is consistent with (52) and is first order
accurate in time. However, direct numerical implementation of (54) shows that
the scheme is unstable.

The key to the GSPM is the observation that, due to the vectorial product
structure of the equation, a Gauss-Seidel type of technique significantly improves
the stability property of explicit schemes for the Landau-Lifshitz equation
[69, 71].

Consider again the Landau-Lifshitz equation:

∂m

∂t
= −m × h − αm × m × h, (55)

where
h = −q (m2e2 +m3e3) + ε∆m + hs + he. (56)

For the splitting procedure, define the vector field:

f = −q (m2e2 +m3e3) + hs + he (57)

Equation
∂m

∂t
= −m × (ε∆m + f) − αm × m × (ε∆m + f) (58)

in three steps:
Step 1: Implicit Gauss-Seidel.

gni = (I − ε∆t∆h)
−1(mn

i + ∆tfni ),

g∗i = (I − ε∆t∆h)
−1(m∗

i + ∆tf∗i ), i = 1, 2, 3

(59)
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


m∗
1

m∗
2

m∗
3


 =




mn
1 + (gn2m

n
3 − gn3m

n
2 )

mn
2 + (gn3m

∗
1 − g∗1m

n
3 )

mn
3 + (g∗1m

∗
2 − g∗2m

∗
1)


 (60)

Step 2: Heat flow without constraints.

f∗ = −Q (m∗
2e2 +m∗

3e3) + h∗
s + he (61)




m∗∗
1

m∗∗
2

m∗∗
3


 =




m∗
1 + α∆t(ε∆hm

∗∗
1 + f∗1 )

m∗
2 + α∆t(ε∆hm

∗∗
2 + f∗2 )

m∗
3 + α∆t(ε∆hm

∗∗
3 + f∗3 )


 (62)

Step 3: Projection onto S2.



mn+1
1

mn+1
2

mn+1
3


 =

1

|m∗∗|




m∗∗
1

m∗∗
2

m∗∗
3


 (63)

3. Computation of the Stray Field

In broad terms, the numerical methods currently used for the simulation
of the Landau-Lifshitz equation can be divided into two categories, according
to how the nonlocal stray field is evaluated. In the first class of methods, or
PDE methods, equation (7)-(9) is solved using an appropriate discretization.
The second class of methods is based on using some kind of fast summation
technique to evaluate (10).

3.1. The PDE approach

The difficulty with this approach is the lack of an effective boundary
condition for U . The differential equation (7) is formulated in the entire space,
which has to be truncated in simulations [72, 73]. Alternatively, a boundary
integral equation can be used to represent the correct boundary condition at
∂V [74, 75]. In this approach, the magnetostatic potential is decomposed into
two parts: U = U1 + U2. The first part satisfies the equation

∆U1 = div M, x ∈ Ω

∂U1

∂ν
= 0, x ∈ ∂Ω, (64)

and is extended as zero outside. Then, U2 solves equation

∆U2 = 0, x ∈ Ω,

[U2] = U1, x ∈ ∂Ω,[
∂U2

∂ν

]
= 0, x ∈ ∂Ω. (65)

The solution to (65) is given by the double layer potential

U2(x) =

∫

∂Ω

U1(y)
∂N

∂ν
(x − y) dσ(y), (66)
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where N is the Newtonian potential in free space.
A different approach has been presented in [76], where U1 is chosen to satisfy

the equation

∆U1 = div M, x ∈ Ω,

U1 = 0, x ∈ ∂Ω, (67)

and it contains the bulk contribution of div M to the stray field. The function
U1 is extended to be equal to zero outside Ω.

The boundary contributions are included in U2, which satisfies the equation

∆U2 = 0, x ∈ Ω ∪ Ω
c
,

[U2] = 0, x ∈ ∂Ω,[
∂U2

∂ν

]
= −m · ν +

∂U1

∂ν
, x ∈ ∂Ω. (68)

The solution to (68) is

U2(x) =

∫

∂Ω

N(x − y)g(y) dσ(y), (69)

where g(y) = −M · ν + ∂U1

∂ν
.

The boundary values of U2 can be evaluated using the integral
representations (66) [74] or (69) [76], and therefore U2 can be determined inside
the domain solving a Poisson equation with Dirichlet boundary conditions.

In [76], the integral (69) is approximated on the boundary of the domain by
approximating g using piece-wise polynomial interpolation. The corresponding
moments of the Newtonian potential can be evaluated analytically. In two
dimensions, the resulting sum can be evaluated in O(N) operations by direct
summation, where N is the total number of grid points in the domain, if a
uniform grid was used. In three dimensions, however, the evaluation of the
boundary values by direct summation is an O(N

4
3 ) operation. Solving Poisson’s

equation with Multigrid [77] is an O(N) operation. Therefore, in two dimensions
this procedure has optimal complexity. In three dimensions, the evaluation
of the boundary values by direct summation dominates the CPU time. The
computational time can be further reduced using a fast summation technique
[78, 79, 80].

3.2. Fast Summation Techniques

For the fast summation of the stray field, the convolution integral in (10)
is replaced by some numerical quadrature. The evaluation of (10) by direct
summation requires O(N2) operations, where N is the number of grid points
in the discretization. This becomes prohibitively expensive even for coarse
discretizations. A number of fast summation techniques have appeared in the
literature, such as the Tree-Code [81], or the Fast Multipole Method [78, 82],
which reduce the computational cost to O(N log2N), or even O(N). However,
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for rectangular domains, the Fast Fourier Transform (FFT) [83] seems to be
the most commonly used approach [84, 85]. It relies on the fact that when the
integral (10) is approximated on a uniform grid with a quadrature rule, the
resulting sum is a discrete convolution, with a kernel that is invariant under
translation. The discrete convolution theorem applies [86], and the sum can be
evaluated in O(N log2N) using the FFT.

For more general geometries, a common practice in micromagnetics has
been to still use a regular grid, which results in a staircase approximation to
the boundary. It was shown in [87] that this approach suffers from serious
inaccuracies when the boundary ∂Ω cuts through numerical cells. The approach
presented in [87] consists on decomposing the stray field into two contributions:
a far field, and a near field. The near field is treated with direct summation,
and it takes into account the geometry of the domain. For the far field, the
contribution from the boundary cells is approximated to leading order by a
rectangular cell with a properly scaled magnetization, in a way reminiscent of
the Tree-Code, or the Fast Multipole Method. The resulting sum is evaluated
using the FFT.

It is important to note that a significant speedup can be achieved in
the study of thin ferromagnetic films. Due to the potential of thin films in
applications, these films have been studied both experimentally, and analytically
[88, 89, 90, 91, 20, 22, 92, 17, 71, 19, 93, 94]. For a thin domain of the form
Ω = V × [0, δ], with δ � diam (V ), the magnetization is independent of the
thickness variable to leading order in δ [91]. Then, the stray field can be written
as [17, 19]

Es[m] =
δ

2

∫

V

m′∇ (∇Kδ ∗ m′) +
δ

2

∫

V

m3 (Wδ ∗m3) , (70)

where m′ = (m1,m2) are the in-plane components of the magnetization, and
m3 is the out-of-plane component. The convolution kernels in (70) are defined
as

Kδ(x) = −
(

1

2π
senh−1

(
δ

|x|

)
− 1

2πδ

(√
|x|2 + δ2 − |x|

))
, (71)

Wδ(x) =
1

2πδ

(
1

|x| −
1√

|x|2 + δ2

)
. (72)

The energy (70) can be written in Fourier space as

Es[m] =
δ

2

∫

R2

|ξ · m̂′|2
|ξ|2

(
1 − Γ̂δ(ξ)

)
dξ +

δ

2

∫

R2

|m̂3|2Γ̂δ(ξ) dξ, (73)

where

Γ̂δ(η) =
1 − e−2πδ|η|

2πδ|η| , η ∈ R
2. (74)

This model was used in [17, 87, 71] for the study of thin ferromagnetic films.
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A similar procedure can be carried out for a double layer consisting of two
thin ferromagnetic layers of thicknesses D1 and D2, respectively, separated by
a non-magnetic layer of thickness a. In this case the stray field energy becomes

2Es[m1,m2] = D1

∫

Ω

m′
1∇ (∇K1 ∗ m′

1) +D1

∫

Ω

m1,3 (W1 ∗m1,3)

+D2

∫

Ω

m′
2∇ (∇K2 ∗ m′

2) +D2

∫

Ω

m2,3 (W2 ∗m2,3)

+D1D2

∫

Ω

m′
1∇ (∇ΨD1,D2,a ∗ m′

2) −D1D2

∫

Ω

m1,3ΣD1,D2,a ∗m2,3

+D1D2

∫

Ω

(m2,3∇ΘD1,D2,a ∗ m′
1 −m1,3∇ΘD1,D2,a ∗ m′

2) , (75)

where

Kj(x) = −
(

1

2π
senh−1

(
Dj

|x|

)
− 1

2πDj

(√
|x|2 +D2

j − |x|
))

,

Wj(x) =
1

2πDj


 1

|x| −
1√

|x|2 +D2
j


 ,

ΨD1,D2,a(x) = − 1

2πD1D2

(
2a senh−1

(
2a

|x|

)
+ (2a+D1 +D2) senh−1

(
2a+D1 +D2

|x|

)

−(2a+D1) senh−1

(
2a+D1

|x|

)

−(2a+D2) senh−1

(
2a+D2

|x|

)
+
√

|x|2 + (2a+D1)2

+
√
|x|2 + (2a+D2)2 −

√
|x|2 + 4a2 −

√
|x|2 + (2a+D1 +D2)2

)
,

ΣD1,D2,a(x) =
1

2πD1D2

(
1√

|x|2 + 4a2
− 1√

|x|2 + (2a+D1)2

− 1√
|x|2 + (2a+D2)2

+
1√

|x|2 + (2a+D1 +D2)2

)
,

ΘD1,D2,a(x) =
1

2πD1D2

(
senh−1

(
2a+D1

|x|

)
+ senh−1

(
2a+D2

|x|

)

− senh−1

(
2a

|x|

)
− senh−1

(
2a+D1 +D2

|x|

))
.
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Alternatively, in Fourier space

2Es[m1,m2] = D1

∫

R2

|ξ · m̂′
1|2

|ξ|2
(
1 − Γ̂1(ξ)

)
dξ +D1

∫

R2

|m̂1,3|2Γ̂1(ξ) dξ

+D2

∫

R2

|ξ · m̂′
2|2

|ξ|2
(
1 − Γ̂2(ξ)

)
dξ +D2

∫

R2

|m̂2,3|2Γ̂2(ξ) dξ

+ 2πD1D2<
∫

R2

(ξ · m̂′
1)(ξ · m̂′

2)
e−4πa|ξ|

|ξ| Γ̂1(ξ)Γ̂2(ξ) dξ

− 2πD1D2=
∫

R2

(
(ξ · m̂′

1)m̂2,3 + (ξ · m̂′
2)m̂1,3

)
e−4πa|ξ|Γ̂1(ξ)Γ̂2(ξ) dξ

− 2πD1D2<
∫

R2

m̂1,3m̂2,3|ξ|e−4πa|ξ|Γ̂1(ξ)Γ̂2(ξ) dξ. (76)

The model (75) has been used by the author to characterize the Bloch and Néel
walls in double layers [95, 96].

4. Energy Minimization Algorithms

When one is interested only in the local minimizers of the Landau-Lifshitz
energy (13), an energy minimization algorithm can be used, instead of a dynamic
approach. The first such approach in Micromagnetics is due to Brown and
Labonte [97]. The method is based on the fixed point iteration

mn+1
i =

hni
|hni |

, (77)

where the effective field h is given by (24). The algorithm suffers from a very
slow convergence, specially when fine grids are used. Although the method can
be accelerated using a Gauss-Seidel, or a SOR approach [98], the convergence
is still too slow for practical purposes.

In order to carry out realistic computations, a more efficient method is
needed. One of the simplest approaches is the Steepest Descent method, which
in this contexts is equivalent to removing the gyromagnetic term in the Landau-
Lifshitz equation. As is typical in these cases, linear convergence to a critical
point is achieved.

For faster convergence, commonly used methods are the Nonlinear
Conjugate Gradient (NCG), which achieves super-linear convergece, and
Truncated Newton methods, which can achieve local quadratic convergence [99].

4.1. Nonlinear Conjugate Gradient

In Micromagnetics the NCG has been frequently used, mostly because it
only requires the computation of the gradient of the energy, as opposed to
the Newton method, where the Hessian of the energy is required. The unit
length constraint |m| = 1 is usually imposed by rewriting the energy in polar



18 C.J. Garćıa-Cervera

coordinates [75]. One of the difficulties in this approach is that the resulting
Laplacian term in the gradient does not have constant coefficients.

Define m = (sen(θ) cos(φ), sen(θ) sen(ψ), cos(θ)). The Landau-Lifshitz
energy (22) becomes

FLL[θ, ψ] =
q

2

∫

Ω

(1 − sen2(θ) cos2(ψ)) dx +
ε

2

∫

Ω

(|∇θ|2 + |∇ψ|2 sen2(θ)) dx

−
∫

Ω

(
1

2
hs + he

)
· (sen(θ) cos(φ), sen(θ) sen(ψ), cos(θ)) dx. (78)

The energy is discretized using finite differences or finite elements, and the
discrete energy is minimized.

The NCG method mimics the method of Conjugate Gradients (CG) for
linear, symmetric, positive definite systems designed by Hestenes and Stiefel
[100]. As in the CG, in the NCG a sequence of approximations (θ(k), φ(k)) is
constructed, as well as a sequence of descent directions, (p(k),q(k)), satisfiying

∇FLL[θ(k), φ(k)] · (p(k),q(k)) < 0, (79)

where ∇FLL = (∇θFLL,∇ψFLL). Given an approximation to the minimizer
and a descent direction, the function FLL[θ(k) + αp(k), ψ(k) + αq(k)] is
approximately minimized. This procedure is known as line search, and it
produces αk. The next approximation is (θ(k+1), φ(k+1)) = (θ(k), φ(k)) +
+αk(p

(k),q(k)). The next descent direction is defined, similarly to the CG
case, as

(p(k+1),q(k+1)) = −∇FLL[θ(k+1), ψ(k+1)] + βk+1(p
(k),q(k)). (80)

There are several choices for the constant βk+1 in (80), and each one gives origin
to a different variant of the NCG. The most commonly used are

βFRk+1 =
(∇FLL[m(k+1)],∇FLL[m(k+1)])

(∇FLL[m(k)],∇FLL[m(k)])
, (81)

which defines the Fletcher-Reeves method;

βPRk+1 =
(∇FLL[m(k+1)],∇FLL[m(k+1)] −∇FLL[m(k)])

(∇FLL[m(k)],∇FLL[m(k)])
, (82)

which is known as the Polak-Ribiére method, and

βHSk+1 =
(∇FLL[m(k+1)],∇FLL[m(k+1)] −∇FLL[m(k)])

(p(k),∇FLL[m(k)] −∇FLL[m(k)])
, (83)

which defines the Hestenes-Stiefel method. For simplicity, in (81), (82), and
(83), we have used the notation m(k+1) and m(k) to represent the magnetization
obtained with (θ(k+1), ψ(k+1)) and (θ(k), ψ(k)), respectively.
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In order to ensure that the new direction (p(k+1),q(k+1)) is a direction of
descent in the Fletcher-Reeves method, the strong Wolfe condition needs to be
imposed on α:

FLL[m(k+1)] ≤ FLL[m(k)] + c1αk∇FLL[m(k)] · (p(k),q(k)),

|∇FLL[m(k+1)] · (p(k),q(k))| ≤ c2|∇FLL[m(k)] · (p(k),q(k))|, (84)

where 0 < c1 < c2 <
1
2 . Additional conditions must be imposed to ensure that

the new (p(k+1),q(k+1)) is a direction of descent for the Polak-Ribiére and the
Hestenes-Stiefel method [99].

4.2. Truncated Newton Method

Newton-based methods have been very successful in large-scale uncon-
strained minimization problems [101, 99]. We present here a modification of
the Truncated-Newton method appropriate for constrained minimization, un-
der the pointwise constraint |m(x)| = 1.

In the Truncated-Newton described here, we again define a sequence of
approximations {m(k)}, and a sequence of descent directions, {p(k)}. In order
to obtain a new descent direction, the energy is approximated around m(k) by a
quadratic functional, which is subsequently minimized. The new approximation
is m(k+1) = m(k) + αp(k), where α is usually chosen performing a line search.

This algorithm has been implemented in cartesian coordinates, without the
need to rewrite the energy in polar coordinates [17, 19, 95, 96]. In order to
impose the constraint |m(x)| = 1, the energy is approximated, locally, by a
quadratic functional:

FLL

[
m + p

|m + p|

]
= FLL[m] + (G[m],p)h +

1

2
(H[m] · p,p)h +O(|p|3). (85)

In minimization without constraints, G and H are the gradient and Hessian of
the energy, respectively. In the constrained problem, G and H are projected
versions of the gradient and Hessian, respectively. The projected gradient is

G[m]i = Πmi
(H[m]i) = H[m]i − (H[m]i,mi)mi. (86)

In (86) Πm denotes the projection operator defined by Πm(v) = v − (u ·m)m.
Therefore, m · Πm(v) = 0.

In practice, often we do not need to compute the Hessian explicitly, but
rather the action of the Hessian on a vector, which can be obtained from (85):

(H[m] · p)i = Πmi

∑

j

∂2FLL
∂mi∂mj

[m] · Πmj
(pj) − (G[m]i,pi)mi

− (mi,pi)G[m]i −
(
∂FLL
∂mi

[m],mi

)
Πmi

(pi). (87)
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The Euler-Lagrange equation is G[m] = 0, or

∇FLL[m]i =

(
∂FLL
∂mi

[m],mi

)
mi. (88)

When we minimize the quadratic part of (85), we obtain that p satisfies the
linear equation

H[m] · p = −G[m]. (89)

The matrix H[m] is symmetric, but not necessarily positive definite. We use
the Preconditioned Conjugate Gradient (PCG) to solve equation (89). For
the preconditioner we use the Laplacian term, which in our discretization can
be inverted using the FFT. If H[m] is not positive definite, the procedure
fails by producing a direction of negative curvature. In that case we use the
corresponding approximation to the solution of system (89) as our descent
direction. Sufficiently near the minimum, H[m] becomes positive definite, and
from (89) we get p = −H[m]−1 · G[m], i.e., Newton’s method. For details
regarding the convergence of this algorithm in the unconstrained case, see [99].

Given an approximation to the minimizer of (13), m(k), and a descent
direction, p, the next approximation is computed with a line search using

f(ε) = FLL

[
m(k) + εp

|m(k) + εp|

]
. (90)

In order to ensure sufficient decrease in the energy, the Wolf conditions need to
be imposed [99].

5. Thermal Effects

Thermal effects have been shown to be important during the magnetization
reversal process in sub-micron sized magnetic samples [102, 103], and have been
the subject of much study recently [104, 105, 106, 107, 108, 109, 110, 93, 111].
Noise becomes more important in smaller samples, since the energy barrier
heights decrease as the sample volume is reduced. Thermal noise depends only
on the temperature, and therefore thermal effects may become dominant in
samples with very small grain size. This affects negatively the reliability of
magnetic storage devices, such as hard drives, and MRAMs, and represents one
of the biggest challenges the magnetic recording industry is facing these days.
From the technological point of view, the main difficulty in the design of effective
MRAMs is the occurrence of rare events, which can spontaneously trigger the
reversal of the magnetization, effectively erasing the information stored.

Traditionally, thermal effects have been studied using Monte Carlo methods,
or by direct simulation of the Langevin equation (19). Due to the disparity of
the deterministic time-scale, and the time-scale of the rare events, these methods
result prohibitively expensive. A number of alternative methods have appeared
in the literature in the past few years, the most notable being the Minimum
Action Method [107, 109], and the String Method [105, 106, 109]. We will briefly
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discuss some of these here, and refer to the original articles for a more detail
analysis.

5.1. Time-Stepping methods for the stochastic Landau-Lifshitz

equation

A common approach for the simulation of the stochastic LLE (19) is the
natural extension of the methods described in section 2 for the deterministic
equation. The white noise term is replaced by

εẆ → ε√
∆V

√
∆t

N(0, 1)ijk, (91)

where ∆V = ∆x∆y∆z is the unit cell volume of the grid, ∆t is the time step
size, and N(0, 1) is a random variable with a normal distribution with mean
zero, and variance one. A value of the random variable is generated at every
cell, and at every time step, and the values in different cells are independent of
each other. The time stepping proceeds as in the deterministic case.

The stability of the numerical methods suffer a more stringent constraint in
the deterministic case. For example, the numerical integration of the stochastic
Landau-Lifshitz equation using the Heun method, for a cell size ∆x = 0.006µm,
requires a time step size ∆t ≈ 0.1 femtoseconds [112]. To alleviate the stability
constraints, implicit schemes are desirable. The GSPM has been tested for the
stochastic equation, and it was shown to retain the properties described earlier
in the deterministic case [71]. With this method it is possible to carry out fully
resolved simulations of the stochastic Landau-Lifshitz equations (equation (19)
below), with time step size ∆t = 1 picosecond, for a cell size ∆x = 0.004µm,
an improvement of approximately four orders of magnitude in the time step size
required, compared to explicit time stepping methods.

5.2. Study of Rare Events

A number of numerical procedures for the study of rare events are based
on the theory of Wentzell and Freidlin [113] for large deviations. The starting
point of this theory is a stochastic ordinary differential equation of the form

dXη
t = b(Xη

t )dt+
√
ηdWt,

Xη
0 = x0, (92)

where 0 < η � 1, and Wt is a Wiener process in R
n. As η → 0, the trajectory

Xη
t converges in probability to the solution of the deterministic equation, which

we denote by ϕ(t). We will assume that b(X) is a Lipschitz continuous function,
to ensure uniqueness of the solution to the deterministic ODE.

Define C([0, T ]; Rn), the set of continuous functions on the interval [0, T ]
with values in R

n, and in that space, the following metri:

d(φ, ψ) =
∑

0≤t≤T

‖φ(t) − ψ(t)‖. (93)
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The theory of Wentzell and Freidlin gives an estimate on the probability that the
stochastic processXη

t stays inside a cylinder of radius δ around the deterministic
solution:

P (d(Xη, ϕ) < δ) ≈ exp

{
1

η
S0,T (ϕ)

}
, (94)

where S0,T (ϕ) is called the action functional, and is defined by

S0,T (φ) =
1

2

∫ T

0

|ϕ̇− b(φ)|2 dt. (95)

For the precise meaning of (94), we refer the reader to [113]. Note that (95) is
only finite if ϕ is absolutely continuous.

Given two states X(0) = a and X(T ) = b, expression (94) can be used
to determine the most likely path that the stochastic process will follow by
minimizing the action:

S0,T (ϕ∗) = min
{ϕ∈C([0,T ];Rn), ϕ(0)=a, ϕ(T )=b}

S0,T (ϕ). (96)

Such a path is called minimal action path (MAP). When the system is a gradient
system, then the minimal action path becomes a minimal energy path (MEP).

Efficient methods have been developed for computing the MAP and
the MEP , as well as the transition rates between different configurations
[105, 106, 107, 109, 93, 114].
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A. Ito vs Stratonovich interpretation of the Landau-

Lifshitz-Langevin equation

When the Landau-Lifshitz-Langevin equation (19) is interpreted in the Ito
sense, the length of the magnetization is not only not preserved, but it blows
up in finite time. To see this, let us consider equation (19), rewritten in the
following form:

dmt = f(m)dt+ G(m) · dBt, (97)
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where f(m) = −m × h − αm × (m × h), the matrix G(m) is defined as

G(m) = ε




0 m3 −m2

−m3 0 m1

m2 −m1 0


+ εα

(
|m|2I − m ⊗ m

)
, (98)

and Bt denotes a three-dimensional Wiener process. According to Ito’s formula
[55],

d|m|2 = 2m · dm +
∑

i,j

δi,jdmidmj =
∑

i

(dmi)
2 =

∑

i,k

(Gik)
2dt

= 2ε2(|m|2 + α2|m|4)dt. (99)

Therefore, y(t) = |m|2(t) solves the deterministic equation, with random initial
data:

dy

dt
= 2ε2(y + α2y2)

y(0) = |m0|2. (100)

The solution is

|m|2(t) =
Ce2ε

2t

1 − αCe2ε2t
, (101)

where C is defined in such a way that y(0) = |m0|2:

C =
|m0|2

1 + α|m0|2
. (102)

Therefore the length of the magnetization becomes infinite at time

t∗ =
1

2ε2
log

1

αC
> 0. (103)

Consequently, equation (19) must be understood in the sense of Stratonovich.
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(e) Sketch of S
state.

(f) Sketch of C
state.

(g) Vortex
state.
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(i) Sketch of
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(j) Sketch of
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Figure 1: Different steady states of the magnetizatios. All the configurations
have been obtained both by dynamic simulation of the Landau-Lifshitz equation,
and by minimization of the Landau-Lifshitz energy using the Truncated Newton
Method described in section 4. Under each configuration, we present a sketch
depicting the average orientation of the magnetization in each domain.
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Figure 2: Branching structure near the boundary of a ferromagnet [18, 17].


