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ABSTRACT 
 
We have performed research to understand the feasibility of using signals received by EOIR sensors to detect small 
vibrations in surfaces illuminated by sunlight. The vibration models consider buildings with vibrating roofs, as well 
as ground vibrations due to buried structures.  For the surface buildings, we investigated two approaches. One 
involved treating the roof as an elastic medium subject to deformation resulting in a PDE whose solution describes 
the fluctuation in the surface’s normal direction vector. The second approach treated the roof as a rigid mass subject 
to motion in six degrees of freedom, while modeling the dynamics of the building’s frame, and tuning the 
parameters to result in resonant frequencies similar to real buildings. We applied the appropriate physical models of 
reflected and scattered light to various surfaces, specular (insulator or conductor), rough but still reflective, or 
diffusely scattering (Lambertian). Matlab code was developed to perform numerical simulations of any system 
configuration described above and easily add new models. The main engine of the code is a signal calculator and 
analyzer that sums the total intensity of received light over a “scene” with a variety of surface materials, 
orientations, polarization (if any), and other parameters. A resulting signal versus time is generated that may be 
analyzed in order to: 1) optimize sensitivity, or 2) detect the vibration signature of a structure of interest. The results 
of this study will enable scientists/engineers to optimize signal detection for passive exploitation of scattered light 
modulated by vibrating surfaces. 
 

1. Introduction 

 
Toyon Research Corporation and UCSB have developed physics-based models for reflected and scattered light from 
vibrating surfaces.  We have modeled the vibration sources in structures and the ground, and simulated the signals 
received from Optical/IR sensors viewing these surfaces from space at various orientations and times of day. 

In Section 2, we discuss our modeling assumptions and procedures.  We address the surface reflectivity in 
subsection 2.1, and surface vibration models in section 2.2 (building vibrations in 2.2.1 and ground vibrations in 
2.2.2).  In Section 3, we describe our simulation framework developed in Matlab that calculates the temporal signal 
that the optical/IR sensor will receive.  Our simulation is capable of modeling a wide range of parameter variations, 
including: 1) incoming light direction, 2) sensor viewing direction, 3) section of scene that sensor is viewing, 4) 
sensor polarization filter (if one is applied), 4) sensor noise level, 5) surface characteristics (diffuse or near-specular, 
i.e. spread, albedo or reflection coefficient), and 6) spectra of vibrations.  Section 4 describes our simulation results, 
as we perform a series of sensitivity studies that fixes all but one or two simulation parameters at a time.  Section  
4.1 is applied to vibrating building structures and 4.2 to the vibrating ground.  In Section 5 we conclude by 
summarizing our observations and providing our recommendations for maximizing likelihood of detection of small 
vibrations. 

2. Models and Assumptions 

2.1  Optical reflection properties of various materials 

 
In order to gain insight into the methods that may be exploited for detecting surface vibrations optically, we first 
study what is known about light reflection from various surfaces.  Consider the diagram shown in Figure 1, showing 
monochromatic polarized light incident upon a surface at angle, 𝜃௜.  We will assume that the incident light travels 
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through air with index of refraction 𝑛ଵ = 1, and the incident surface may be either an insulator or conductor.  We 
consider three types of surfaces: 1) specular surfaces (perfectly smooth), 2) diffuse surfaces (Lambertian), and 3) 
real surfaces that exhibit both specular reflection and diffuse reflection.  The reflectance of a surface may be 
characterized by its Bidirectional reflectance distribution function (BRDF), which is the ratio of reflected power per 
unit solid angle per unit projected surface area perpendicular to the outgoing ray (surface radiance) and incoming 
power per unit surface area (surface irradiance).  The BRDF is a 4-dimensional function (of the incoming direction 
angles, (𝜃௜ , 𝜑௜), and the outgoing direction angles, (𝜃௥ , 𝜑௥)). 
 

2.1.1 Surfaces that Reflect Specularly 
 
First consider the case of a perfectly smooth surface (specular reflection), for which the solutions to Maxwell’s 
Equations give the ratio of reflected power to incident power and are known as the Fresnel Equations.  For such 
surfaces, all reflected energy is concentrated in one direction such that 𝜃௥ = 𝜃௜  as shown in Figure 1, which may be 
represented quantitatively by the BRDF, 
 
 

𝑓(𝜃௜ , 𝜑௜ , 𝜃௥ , 𝜑௥) = 𝑅(𝜃௜)
𝛿(𝜃௜ − 𝜃௥)𝛿ଶగ(𝜑௜ − 𝜑௥ − 𝜋)

cos(𝜃௜)
, 

(1) 

 
where 𝛿(𝜃) is the Dirac delta function and 𝛿ଶగ(𝜃) is the Dirac delta function of period 2𝜋, and 𝑅(𝜃) is the power 
reflection coefficient at incident angle 𝜃. 
 
In addition to the material index of refraction, the solution depends upon the polarization of the incident light.  S-
polarized light has its electric field perpendicular to the plane of the diagram in Figure 2 and thus parallel to the 
interface, whereas p-polarized light has its electric field in the plane of the diagram and perpendicular to the s-
polarized electric field [2, 4, 14].   
 
For insulating materials, the reflection coefficient for s-polarized light is given by the expression, 
 
 

𝑅௦ = ተተ
𝑛ଵ cos(𝜃௜) − 𝑛ଶට1 − ቀ

𝑛ଵ

𝑛ଶ
sin(𝜃௜)ቁ

ଶ

𝑛ଵ cos(𝜃௜) + 𝑛ଶට1 − ቀ
𝑛ଵ

𝑛ଶ
sin(𝜃௜)ቁ

ଶ
ተተ

ଶ

 , 

 

(2) 

while the reflection coefficient for p-polarized light is given by, 
 
 

𝑅௣ = ተተ
𝑛ଵට1 − ቀ

𝑛ଵ

𝑛ଶ
sin(𝜃௜)ቁ

ଶ

− 𝑛ଶcos(𝜃௜)

𝑛ଵට1 − ቀ
𝑛ଵ

𝑛ଶ
sin(𝜃௜)ቁ

ଶ

+ 𝑛ଶcos(𝜃௜)

ተተ

ଶ

. 

(3) 

 
Fresnel’s equations ((2) and (3)) are plotted versus angle of incidence, 𝜃௜, in Figure 2 for light traveling through air 
(𝑛ଵ = 1) incident upon a glass surface (𝑛ଶ = 1.5).  For conducting materials, Fresnel’s Equations may still be 
applied provided that we use a complex index of refraction,  
 
 

𝑛ଶ = ඨ1 + 𝑖 ൬
𝜎

𝜖଴𝜔
൰ = 𝑛ோ + 𝑖 𝑛ூ , 

 

(4) 

where 𝜎, 𝜖଴, and 𝜔 are conductivity, permittivity of free space, and angular frequency of light [6]. Physically, the 
imaginary part accounts for the fact that EM-radiation is attenuated as it travels through conducting materials.  
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2.1.2 Surfaces that Reflect Diffusely (Lambertian) 
 
Now consider a surface that reflects diffusely.  Diffuse reflection is an idealization of a limiting case for which the 
outgoing reflected energy is independent of the direction of the incoming light that irradiates a surface.  Physically, 
such materials are rough, with a surface roughness length scale much greater than the wavelength of light reflecting 
from the surface [1, 9, 10].  Photons undergo multiple reflections within the facets of these rough surfaces, which 
acts to randomize their direction and polarization when they finally exit the surface.  For example, a surface with 
RMS roughness of 10 𝜇𝑚 interacting with yellow light at wavelength 589 nm would tend to reflect diffusely.  The 
BRDF for these Lambertian surfaces is given by 
 
 𝑓(𝜃௜ , 𝜑௜ , 𝜃௥ , 𝜑௥) = 𝑅ௗ, (5) 
   
where 𝑅ௗ is the diffuse surface albedo constant.  The outgoing radiation intensity is the same in all directions, which 
means that the surface looks equally bright when viewed from any direction.  Another description of Lambertian 
surfaces that is sometimes given is that each patch of area on the surface radiates according to “Lambert’s cosine 
law,” which states that the radiant flux from a patch of surface area ∆𝐴 is proportional to cos(𝜃௥).  Since the patch 
of area appears smaller as ∆𝐴 cos(𝜃௥) when viewed from angle 𝜃௥, we see that the intensity (radiant flux per unit 
area) is actually constant and consistent with equation (5). 
 

2.1.3 Real Surfaces that Exhibit Both Specular and Diffuse Reflection 
 
There are many models that attempt to capture the behavior of real surfaces, which are neither perfectly specular nor 
perfectly diffuse.  Most physically derived surface reflection models described in the literature reference the work of 
Torrance and Sparrow [16].  More recent models refine and extend this basic model [8, 9, 10]. These models have 
been validated experimentally on a small but representative group of rough and smooth surfaces, conductors and 
insulators.  The main results of this work may be summarized as follows: real surfaces exhibit varying degrees of 1) 
specular spike, 2) diffuse, and 3) specular lobe (see Figure 1).  The equation that describes the BRDF of these 
surfaces is a combination of three terms, two of which are given by equations (1) and (5) and the third term 
representing the specular lobe given by 
 
 𝑓(𝜃௜ , 𝜑௜ , 𝜃௥ , 𝜑௥) =  𝑅(𝜃௜)[𝐺 cos(𝜃௥)⁄ ]exp (−𝛼ଶ/2𝑚ଶ) , (6) 
 
where G is a geometrical factor resulting from the surface microfacets dependent on both the incident light and 
viewing direction, 𝛼 is the angle between the viewing direction and the center of the specular lobe (which may not 
be in the same direction as the specular spike), and m is the RMS slope of microfacets.  G and 𝛼 are a complex 
mathematical expressions that contain the additional angular dependence of the BRDF for the specular lobe, but in 
this paper we will use a constant G and specular lobe center aligned with the specular spike. 
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Figure 1. Types of Reflection 
Specular spikes, diffuse, and specular lobe  reflection models are illustrated for photons incident upon a reflecting 
surface. 
 

2.2  Vibration models of surfaces 

2.2.1 Vibration of building substructures  
 
In addition to the building frame vibrations, individual substructures of the building (windows, doors, roof, etc.) may 
vibrate due to either mechanical or acoustical coupling from the building vibrations.  A window, for example, may 
be modeled as a thin rectangular elastic solid subject to displacement perpendicular to the rectangular plane, i.e. the 
two-dimensional scalar wave equation with forcing, 
 
 𝜕ଶ𝑢

𝜕𝑡ଶ
= 𝑣ଶ ቆ

𝜕ଶ𝑢

𝜕𝑥ଶ
+

𝜕ଶ𝑢

𝜕𝑦ଶ
ቇ +

𝐹(𝑥, 𝑦, 𝑡)

𝛿 𝜌
 , 

(7) 

 

where 𝑣 = ඥ𝐺 𝜌⁄  is the shear wave speed, G is the shear modulus, and 𝜌 is the density, F is the force per unit area, 
and 𝛿 is the substructure thickness.  For acoustically driven vibrations, we will assume that the boundary is fixed 
(𝑢|డΩ = 0) and that the rectangular plane is driven with a pressure constant over the rectangular plane and with 
sinusoidal variation in time, 𝐹(𝑥, 𝑦, 𝑡) =  𝑝଴ cos (𝜔𝑡).  Based on a shear modulus of 26.2 GPa and density of 2600 
kg/m3, the shear wave speed in glass is around 3100 m/s.  Assuming typical window dimensions on the order of a 
few meters (say L = 3 m), this establishes a system time scale of around 𝜏 = L/v = 3 m/(3100 m/s) = 1 ms.  Thus, if 
we focus on dominant vibration driving frequencies much less than around 1 kHz, then equation (7) may be reduced 
to a Poisson equation as the system is always in a state of quasi-equilibrium, 
 
 𝜕ଶ𝑢

𝜕𝑥ଶ
+

𝜕ଶ𝑢

𝜕𝑦ଶ
= −

𝑝଴

𝛿 𝐺
cos (𝜔𝑡), 

(8) 

 
Another way to derive this simplification is to non-dimensionalize (4) using 𝑡 ′ =  𝜔𝑡, 𝑥 ′ =  𝑥 𝐿⁄  and 𝑦′ =  𝑦 𝐿⁄ , 
which gives  
 
 

−
𝜔ଶ𝐿ଶ

𝑣ଶ

𝜕ଶ𝑢

𝜕𝑡′ଶ
+ ቆ

𝜕ଶ𝑢

𝜕𝑥′ଶ
+

𝜕ଶ𝑢

𝜕𝑦′ଶ
ቇ = −𝐿ଶ𝑝଴cos (𝜔𝑡)/(𝑣ଶ 𝛿 𝜌) , 

 

 

where  
డమ௨

డ௧′మ
 ~ 

డమ௨

డ௫′మ
+

డమ௨

డ௬′మ
~ 𝑢 .  And since 𝜔 ≪ 𝑣/𝐿, we can ignore the  

డమ௨

డ௧′మ
  term.   
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Another possible mode that we imagine driving the substructures of the building to vibrate is that the boundary 
vibrates (e.g. window frame) due to mechanical coupling of the building to the vibration source and the substructure 
vibrates in response to this boundary driving force.  In this case, the boundary condition is given by 𝑢|డΩ =
𝐴଴ cos(𝜔𝑡), but no external driving force, 
 
 𝜕ଶ𝑢

𝜕𝑡ଶ
= 𝑣ଶ ቆ

𝜕ଶ𝑢

𝜕𝑥ଶ
+

𝜕ଶ𝑢

𝜕𝑦ଶ
ቇ . 

(9) 

 
We can transform to a Dirichlet boundary condition by defining 𝑢ത = 𝑢 − 𝐴଴ cos(𝜔𝑡).  The result is that we obtain 
an equation similar to (8),  
 
 𝜕ଶ𝑢ത

𝜕𝑥ଶ
+

𝜕ଶ𝑢ത

𝜕𝑦ଶ
=  −

𝜔ଶ𝜌 𝐴଴

𝐺
cos (𝜔𝑡). 

(10) 

 
Note that all the spatial shape dependence of u is contained in 𝑢ത .  Thus, 𝑢ത  gives the amplitude of shape deformations 
of the subsurface due to building vibrations. 
 
We can estimate the magnitude of the surface deformations in both cases, equations (8) and (10), simply as L2 
multiplied by the right-hand side.  We estimate a sound pressure of 120 dB (20 Pa), material thickness 𝛿 = 1 mm, 
and G = 26.2 GPa, and L = 3 m, which gives 7𝜇𝑚 due to acoustic forcing from a 120 dB source.  In the case of 
mechanical vibrations transmitted through the substructure frame, we estimate 𝜔 = 2𝜋 50 𝑠ିଵ, 𝜌 = 2600 kg/m3, 
𝐴଴ =  1 mm (somewhat ad hoc estimate for building vibrations), giving a surface deformation estimate of 10 𝜇𝑚.  
More precise deformation shape profiles may be obtained by solving (8) or (10) numerically. Figure 2 shows the 
deformation displacement and gradient obtained by solving for the steady-state solution to equation (10) on a 3m-
by-3m square.  Maximum displacement is around 6 𝜇𝑚, and maximum gradient magnitude is around 10-5.  The 
gradient magnitude is exactly the same as the magnitude of the surface normal variation and thus the magnitude of 
light scattering angle variations.  Finally, Figure 10 shows this elastic displacement profile applied to the roof of a 
simple rectangular building structure, which is used in our Matlab simulation model described in section 3. 
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Figure 2.  Surface Deformation and Gradient 
Surface deformation, displacement (above) and gradient magnitude (below) for a 3m-by-3m vibrating glass surface 
modeled by equation (10) (solved numerically in Matlab).   
 
While the preceding analysis gives some estimate for the magnitude and shape of surface deformations due to 
vibrations, some of the numerical values used may be quite different for actual structures of interest and vibration 
modes.  In the remaining sections, we will allow these magnitudes to vary as parameters and study the feasibility of 
detecting these vibrations optically by light scattered from these surfaces.   
 

2.2.2  Vibration of building frame 
 
While our building vibration model described in section 2.2.1 captured the effects of material elasticity of a 
subsection of a building structure subject to forcing, it did not capture the effect of the building’s resonant modes 
due to structural parameters of frame stiffness and damping plus building.  It is these parameters that we model in 
this section.   
 
Our objective is create as simple a model as possible that captures the richness of multiple building resonances that 
in the presence of a driving force plus noise will result in a signal with a mix of spectral components at both the 
resonant and driving frequencies similar to what is seen in real data [11].  To this end, a schematic of our building 
resonance model is shown in Figure 3.  A rigid sheet of mass M, and dimensions LX by LY is supported at its four 
corners by a spring-dashpot system.  Each spring-dashpot system has a stiffness k1 and damping coefficient b1 for 
vertical movements, and a stiffness k2 and damping coefficient b2 for lateral movements.  As a driving force, we 
subject the base of the building at one corner to a circular displacement function that rotates at the driving 
frequencies,  
 
 𝐴(𝑡) =  ෍ 𝐴௜൫cos(𝜔௜𝑡) 𝑑መଵ + sin (𝜔௜𝑡)𝑑መଶ൯

௜

 (11) 

 
where 𝑑መଵ and 𝑑መଶ are perpendicular unit vectors in the plane of the circular driving force motion. 
 
The motion of rigid sheet of mass, M, is described by six degrees of freedom: the three center of mass coordinates 
𝑟௖௠ = (𝑥௖௠ ,  𝑦௖௠, 𝑧௖௠), and the three Euler angles (𝜃, 𝜙, 𝛾), which describe the orientation of the rigid sheet’s 
body axes, {𝑒̂ଵ, 𝑒̂ଶ, 𝑒̂ଷ}, relative to the inertial axes, {𝑥ො, 𝑦ො, 𝑧̂} [13]. We adopt the convention that 𝜃 is the tilt of 𝑒̂ଷ 
towards −𝑦ො, 𝜙 is the CCW rotation of 𝑒̂ଷ around 𝑧̂, and 𝛾 is the CCW rotation of the 𝑒̂ଵ𝑒̂ଶ plane about 𝑒̂ଷ. 
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The forcing responsible for the system dynamics acts at each of the four corners of the rigid sheet, 𝑟௝, according to 
the position and velocity of the corner coordinates relative to their equilibrium values, 𝑟௝଴: 
 

                      𝐹⃗௝ = −൫𝑟௝ − 𝑟௝଴൯ ⋅ (𝑘ଶ,  𝑘ଶ,  𝑘ଵ) − ൫𝑟ఫ
̇ − 𝑟ఫ଴

̇ ൯ ⋅ (𝑏ଶ,  𝑏ଶ,  𝑏ଵ), (12) 

 
where 𝑟௝ is calculated conveniently using the body coordinate unit vectors,  
 

                      𝑟௝ = 𝑟௖௠  ± (𝐿𝑋/2)𝑒̂ଵ  ±  (𝐿𝑌/2)𝑒̂ଶ, (13) 
 
for  j = 1, 2, 3, 4. Newton’s Laws of Motion for a rigid body are applied in the center of mass body coordinate 
system, resulting in the following differential equation system, 
 

                      𝑟̈௖௠ = ∑  𝐹⃗௝
ସ
௝ୀଵ  

 
𝐼ଵ𝜔̇ଵ = 𝑁ଵ − (𝐼ଷ − 𝐼ଶ)𝜔ଷ𝜔ଶ 
𝐼ଶ𝜔̇ଶ = 𝑁ଶ − (𝐼ଵ − 𝐼ଷ)𝜔ଵ𝜔ଷ 

  𝐼ଷ𝜔̇ଷ = 𝑁ଷ − (𝐼ଶ − 𝐼ଵ)𝜔ଶ𝜔ଵ ,  

 
 

(15) 

where {𝐼ଵ, 𝐼ଶ, 𝐼ଷ} are the principle moments of inertial given by 𝑀(𝐿𝑌)ଶ/12, 𝑀(𝐿𝑋)ଶ/12, and 𝑀((𝐿𝑋)ଶ + (𝐿𝑌)ଶ)/
12, respectively.  The torques, {𝑁ଵ, 𝑁ଶ, 𝑁ଷ}, are expressed in the body coordinates as are the angular velocities, 
{𝜔ଵ, 𝜔ଶ, 𝜔ଷ}, which are related to the Euler angles by, 

 
𝜔ଵ = 𝜃̇ cos 𝛾 + 𝜙̇ sin 𝜃 sin 𝛾 

𝜔ଶ = −𝜃̇ sin 𝛾 + 𝜙̇ sin 𝜃 cos 𝛾 
𝜔ଷ = 𝛾̇ + 𝜙̇ cos 𝜃.  

 
 

(16) 

Substituting equation (16) into (15) results in a 3-by-3 linear system for the Euler angle accelerations, ൛𝜃̈, 𝜙̈, 𝛾̈ൟ.  
This system is solved at every time step in the Runge-Kutta numerical integration method applied using Matlab’s 
ode23 or ode45.   
 

 
 
Figure 3.  Building Resonance Model Schematic 
Above we illustrate the mechanical system used to model building vibrations including building resonances.  There is a 
spring-dashpot network at each of the four corners of a rigid sheet of dimensions LX by LY and mass, M.  Each 
network provides restoring force and damping to motion in the x, y, and z-directions. 
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We consider a small forcing function of total amplitude 0.001m that acts at one of the four corners of the base of the 
building. The equilibrium position of this point is perturbed in a circular motion as described by equation (11) and 
illustrated in Figure 3.  The impulse and frequency response is calculated numerically by applying a superposition of 
all frequencies between 0 and half the sample frequency 𝑓௦/2, i.e. the Nyquist frequency.  Numerically, this driving 
force approximates an impulse train with period of 10 sec., which may be surmised by the shape of the impulse 
responses.  We plot the system response in both the time and frequency domains for the degrees of freedom that are 
excited: 𝑥௖௠, 𝑧௖௠, and 𝛼 = 𝜃 cos 𝜙.  The last angle, 𝛼, is the signed tilt of the 𝑒̂ଷ body axis relative to the fixed 𝑧̂-
axis.  For system physical parameters, 𝑀 = 1, 𝑘ଵ = (2𝜋)ଶ, 𝑏ଵ = 0.05, 𝑘ଵ = 4(2𝜋)ଶ, 𝑏ଵ = 0.05, we expect resonant 
frequencies of 4 𝐻𝑧 for 𝑥௖௠, 2 𝐻𝑧 for 𝑧௖௠, and 2√3 ≈ 3.5 𝐻𝑧 for 𝛼, exactly as observed (see Figure 4).  There is 
also a resonance of 4√3  ≈ 6.9 𝐻𝑧 for variable 𝛾 (interpreted as twisting of the roof) not excited by our forcing, but 
excitable through random perturbations to the building’s four corners considered in the next subsection. 
 
 
a) 

b) 
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c) 

 
Figure 4.  Building Resonance Impulse and Frequency Response   
Building model impulse train response and frequency response.  A driving force consisting of a superposition of equal 
amplitude sinusoids with minimum frequency 0.1 Hz is used to approximate an impulse train (10 sec. period).  Note 
that the driving force is a circular displacement of just one corner of the building structure as illustrated in Figure 3.  
The system response in both the time and frequency domain is shown in (a) through (c) for the three affected degrees of 
freedom: x-coordinate of center of mass, z-coordinate of center of mass, and signed tilt angle, 𝛼 = 𝜃𝑐𝑜𝑠𝜙. 

2.2.3  Ground vibration model 
 
Consider a building structure buried underground as shown in Figure 5.  We assume that the building vibrates with 
some spectra and consider both vertical and lateral vibration modes.  In both cases, the earth surrounding the 
building will be displaced and cause seismic waves to emanate.  We expect compression waves (P-waves) to radiate 
parallel to the direction of the vibrations while shear wave (S-waves) will radiate in the plane perpendicular to the 
vibrations.  Since lateral vibrations will mostly induce ground surface waves whose displacement vector is in the 
plane (Love or Lamb waves), we focus on vertical vibrations (as depicted in Figure 5) since these will deform the 
ground vertically, thus causing the surface normal direction to fluctuate as required for detection optically [3, 12].  
Rayleigh waves have a wave speed of around 2-5 km/s at the surface of the earth’s crust (dependent on the stiffness 
and mass of the rock present) and satisfy the two-dimensional wave equation,  
 
 𝜕ଶ𝑢

𝜕𝑡ଶ
= 𝑣ோ

ଶ ∇ଶ𝑢, 
(17) 

 
where u is the ground surface vertical displacement, and 𝑣ோ ≈ 3 𝑘𝑚/𝑠 is the wave speed [3].  We choose the 
boundary condition near the origin (directly above the underground building) so that only waves traveling radially 
outward result.  The key observation is that we may use the Green’s function solution to the wave equation in three-
dimensions and superposition to form the Green’s function solution to the wave equation in two-dimensions.  The 
Green’s function represents the solution to a PDE where the forcing function is located at a singular point.  In three-
dimensions, if we have sinusoidal forcing at the origin the resulting waveform is a radially outward traveling wave 
given by: 
 

𝑢ீ_ଷ஽(𝑟, 𝑡) =  
1

𝑟
cos(𝑘𝑟 − 𝜔𝑡). 

(18) 

 
  

We then superimpose an infinite vertical line (along the z-axis and through the origin) of these point sources to form 
the Green’s function in two-dimensions: 
 
 

𝑢ீ_ଶ஽(𝑟, 𝑡) = න
1

√𝑟ଶ + 𝑧ଶ
cos ቀ𝑘ඥ𝑟ଶ + 𝑧ଶ − 𝜔𝑡ቁ

∞

ିஶ

𝑑𝑧 . 
(19) 
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The integral in equation (19) does not have a closed form analytical solution, but may be solved numerically to 
whatever degree of accuracy is desired.  Also, care must be applied in order to apply proper normalization since 
𝑢ீ_ଶ஽(𝑟, 𝑡) is singular at the origin.  Since we are using equation (19) to model waves emanating from a vibrating 
underground structure of finite size, we apply the following boundary condition to form our solution, 
 
 

𝑢(𝑟, 𝑡) = ቊ
𝐴଴𝑐𝑜𝑠൫𝜔𝑡 − 𝜙(𝜔)൯        if 𝑟 < 𝑅

𝐶(𝜔) 𝑢ீ_ଶ஽(𝑟, 𝑡)              if 𝑟 ≥ 𝑅
  , 

(20) 

 
  

where 𝐶(𝜔) and 𝜙(𝜔) are determined uniquely by the requirement that 𝑢(𝑟, 𝑡) be continuous at 𝑟 = 𝑅, ∀𝑡.  See 
Figure 6 for plots of this equation.   
 
 

 

 
 
Figure 5.  Ground System Scematic 
To the left, a building buried underground vibrates vertically causing P-waves to travel upward and downward and S-
waves to radiates to the sides.  On the surface, Rayleigh waves radiate away from the point directly above the building.  To 
the right is a pictorial representation of these seismic waves showing the ground displacements associated with each wave 
type. 
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Figure 6.  Ground Model Numerical Solution 
Our refined ground model is shown above as: a) radial slices at a series of times over half a period of the driving force, 
for a driving frequency, 𝑓 = 60𝐻𝑧  and 𝑅 = 25𝑚. 

 

3. Numerical Simulation of Scattered Light from Vibrating Surfaces 

 
We have developed a detailed and efficient numerical model in Matlab that captures all the relevant physics of 
reflected and scattered light (discussed in section 2.1) from various surfaces. It utilizes the vibration models 
illustrated in Figures 2, 3, and 5 for building and ground vibrations, respectively. Our simulation outputs the signals 
that are received by the optical/IR sensor, and additionally allows the user to conduct sensitivity studies as one or 
more parameters are varied.  We define sensitivity to be the variation in the temporal signal divided by the mean 
value.  For a signal, 𝑥(𝑡), we define 
 
 

𝑆 =  
max൫𝑥(𝑡)൯ −  min (𝑥(𝑡))

mean(𝑥(𝑡))
. 

(21) 

 
We assume the optical/IR sensor (or one of the sensor’s pixels) is focused on a particular rectangular field-of-view 
(FOV) of a scene on the ground.  The signal, 𝑥(𝑡), received by the sensor is defined as the average value (over the N 
subpixels of the scene) of the reflected intensity per unit solid angle per unit projected area, which is just the average 
of the BRDF, given as B in equation (23).  Numerically, we calculate   
 
 

𝑥(𝑡) =  
1

𝑁
෍ 𝐵((𝑛ො௦)௞;  𝑛ො௜, 𝑛ො௩)

ே

௞ୀଵ

. 
(22) 

where 
 

𝐵(𝑛ො௦;  𝑛ො௜, 𝑛ො௩) =  
𝑛ො௦ ⋅ 𝑛ො௜ 𝑅(𝜃௜) 𝐶(𝑚) exp(−αଶ/2𝑚ଶ)

𝑛ො௦ ⋅ 𝑛ො௩

, 
(23) 

 
Which is a numerical approximation   The normal vectors are 𝑛ො௜, the direction of the incident light source, 𝑛ො௩ the 
direction of the sensor viewing the scene, and 𝑛ො௦ the normal to the subpixel element. 𝑅(𝜃) is the reflectivity 
coefficient as a function of  𝜃 = 𝑐𝑜𝑠ିଵ(𝑛ො௦ ⋅ 𝑛ො௜) , Φ଴ is the angular spread of the reflected light plume, and α is the 
angle between the light plume’s center outgoing direction (𝑛ො௦ for diffusely scattered light, and 𝑛ො௥ = 2(𝑛ො௦ ⋅ 𝑛ො௜)𝑛ො௦ −
𝑛ො௜ for specularly reflected light) and the viewing direction.  𝐶(𝑚) is a normalization constant that conserves total 
reflected energy.  Equation (23) holds whenever all quantities in the calculation are non-negative.  Otherwise, we set 
𝐵 = 0. 
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Figure 7.  Matlab Scene Simulation Schematic 
Shown above is a schematic of our simulation framework developed in Matlab.  We assume the optical/IR sensor (or one of the 
sensor’s pixels) is focused on a particular rectangular section of a scene on the ground.  Numerically, we subdivide the scene into 
a matrix of subpixels each with a distinct surface normal direction, 𝑛ො௦, and material properties (diffuse, near-specular reflection) 
and albedo or reflectivity function.  Incorporating our building and ground vibration models causes the surface normal vectors, 
𝑛ො௦, to vary in time.  The signal received by the sensor is a summation over all the BRDF values of the N subpixels. 

 

4. Simulation Results and Analysis 

 
In this section, we perform a series of sensitivity studies where we setup a scene and system configuration and vary 
one parameter at a time.  The objective is to identify configurations that lead to higher sensitivity (as defined in 
equation (21)), making whatever detection algorithms that may be applied more likely to succeed.  In the 
subsections that follow, we consider two different scenes: 1) a building above ground with a flat roof made of steel 
that reflects in a near-specular fashion, and 2) a building buried underground vibrating vertically inducing very small 
Rayleigh waves on the surface. 
 

4.1 Building above ground, substructure vibrations (specular reflection) 
 
We consider a rectangular building structure, 50m-by-50m, with a flat roof made of steel that vibrates at a fixed 
frequency, say 40 Hz, with amplitude 1 mm at the center.  We assume the sun is incident at an inclination angle of 
𝜋/3 rad and azimuthal angle of 𝜋 rad.  We position our sensor at exactly the opposite direction, 𝜋/3 rad inclination, 
and 0 rad azimuthal.  The near-specular plume is given an angular width of 0.01 radians due the sun’s finite size, 
subtending an angular width of the solar radius divided by the distance from the earth to the sun.  The sensor focuses 
on the entire building roof.  In Figure 8, we plot sensitivity as we perturb the sensor position from -0.02 to 0.02 rad 
inclination.  We see that sensitivity is a minimum when the sensor is centered on the lobe and increases as we 
approach the edge of the lobe.  In theory, if we could position the sensor perfectly on the edge of the reflected lobe, 
we could get sensitivities of order 1, but more generally if we can orient the sensor with approximately 0.03 rad 
precison, we should be able to achieve a sensitivity of order 10ିସ with this configuration.  We observed that the 
signals are actually at double the frequency of the vibration since every time the roof it flat (twice per vibration 
cycle) corresponds to a maximum reflected intensity. 
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Next, let’s study this same system but with the sensor focused on just one quadrant of the building, so that only a 
quarter of the sensor’s field of view is occupied by the building (see Figure 9).  The rest of field of view we assume 
is ground that diffusely scatters light with albedo of 1, and is not vibrating.  It is interesting that we can improve our 
sensitivity by an three orders of magnitude by simply moving our focus off-center!  We can understand this result 
intuitively as follows.  When we focus on the entire vibrating surface, there is a symmetry about the center – for 
every area element that is tilted slightly one way, there is another element opposite the center perturbed the opposite 
way.  These two opposing perturbations tend to have a cancellation effect.  Thus, if we can isolate just one of them, 
we can greatly enhance sensitivity. 
 
Now that we have identified the two important parameter optimizations for the near-specularly reflective building, 
namely 1) focusing on a quadrant, and 2) viewing at an angle off the main specular lobe (by around 0.015 rad as 
observed in Figures 8 and 9), we continue by studying the effect of vibration amplitude on both the signal structure 
and resulting sensitivity.  In Figure 14, we see that as the sensitivity and vibration amplitude are related 
approximately linearly until the sensitivity begins to saturate at order 1.  This is due to vibration being so large that 
the signal goes to near zero over part of the cycle as the full angular width of the reflected plume is reflected 
completely away from the sensor. 
 

 
 
Figure 8.  Building Model Signals and Sensitivity Versus Viewing Angle: Centered FOV 
Sensitivity is plotted for varying sensor inclination in the reflecting building scene with sensor centered on building.  
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Figure 9.  Building Model Signals and Sensitivity Versus Viewing Angle: Quadrant FOV 
Sensitivities is plotted for varying sensor inclination in the reflecting building scene with sensor focused on one quadrant of 
building. 
 
 

 
 
Figure 1.  Building Model Signals and Sensitivity Versus Amplitude: Centered FOV 
Sensitivities is plotted for varying sensor vibration amplitude in the reflecting building scene with sensor focused on 
one quadrant of building and viewed at an inclination angle 0.015 rad off the main specular lobe center. 
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Figure 11.  Sensitivity Versus Angle For Polarized Sensor Near Brewster’s Angle 
Sensitivity for a near-specularly reflective pane of glass viewed near Brewster’s angle with a polarization filter that 
passes only p-polarized light.  Note that the same system without polarizer has a sensitivity of around 3e-5.  
 
We study one more near-specularly reflective system configuration more out of curiosity than practicality.  We 
consider a square pane of glass vibrating in the same way as the roof of the previous studied building, with 1 m side 
length and 10 𝜇𝑚 amplitude.  We focus our sensor on a quarter of the pane, and apply a polarization filter to our 
sensor so that only p-polarization is sensed, while varying the incoming light angle near Brewster’s angle 
(approximately 57 degrees, the angle at which the p-polarization component goes to zero).  Our sensor is directed at 
the center of the reflected lobe.  Sensitivity is plotted in Figure 11, showing a spike of order 1 exactly at Brewster’s 
angle and a region of sensitivity greater than 0.01 over a window ±0.005 rad of Brewster’s angle.  We note that this 
same system without polarizer would have a sensitivity of 3e-5.  This is a huge enhancement of sensitivity of at least 
three orders of magnitude!      
 

4.2  Building above ground, frame vibrations (specular reflections) 
 
We now use the building resonance model described here to simulate the signal received by an optical/IR sensor in 
space.  The forcing function consists of a single 10𝐻𝑧 circular motion of amplitude 0.001m as well as Gaussian 
white noise of RMS magnitude 10ିସ𝑚 acting at each corner and in each dimension of motion.  The driving 
frequency was selected to be different enough from the resonance frequencies to be resolved but small enough to be 
well resolved over a sampling frequency of 𝑓௦ = 200𝐻𝑧.  We chose white noise for its uniform spectrum which is 
able to excite all the resonance frequencies of the building, similar to what we expect to happen due to wind and/or a 
lack of perfect smoothness in the driving frequency.   
 
The roof surface is assumed to be made of steel giving a near-specular reflection with a spread angle of 0.01 rad due 
to the finite size of the sun, exactly the system studied in the elastic roof model of section 4.1.  The incoming light 
from the sun is at angle of 𝜃௜ = 𝜋/3 above the horizon and is viewed at the same inclination angle shifted 
azimuthally by 𝜋.  As we did in section 4.1.1 with our elastic roof building model, we simulate this system for a 
series of perturbations, Δ𝜃, in the viewing inclination angle, i.e. 𝜃௩ = 𝜃௜ + Δ𝜃.  Observed signals in both the time 
and frequency domain are shown in Figure 24.  We see in every case there are components at both the building 
resonance frequencies, 3.5𝐻𝑧 in particular since this is the resonance of the tilt angle which most directly affects the 
surface normal vector orientation 𝑛ො௦ = 𝑒̂ଷ, and the driving frequency 10𝐻𝑧.   
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a) 

 
b) 

 
 
Figure 12.  Building Resonance Model Signals Versus Viewing Angle 
Building Resonance model signals and FFT magnitude for a driving frequency of 10𝐻𝑧 of amplitude 0.001m acting at one 
corner, and Gaussian white noise of RMS amplitude 10ିସ𝑚 acting at all corners. 
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Figure 13. Building Frame Vibration Model Sensitivities Versus Viewing Angle 
Building Frame Vibration Model Sensitivity, for a driving frequency of 10Hz of amplitude 0.001m acting at one corner, 
and Gaussian white noise of RMS amplitude 10ିସ𝑚 acting at all corners. 

 

4.3 Building underground (ground vibrates, light scatters diffusely) 
 
We consider a building underground that causes the ground above to vibrate with some small amplitude of 1 mm.  
As described in Section 3.4, Rayleigh waves are created on the surface in the form described by equation (20).  For a 
single frequency, 𝑓௜ = 40 𝐻𝑧 , we calculate a wavelength  𝜆௜ = 𝑣ோ/𝑓௜  = 3000/40  = 75 m.  
  
After having learned from the results of the building system described in Section 4.1 that sensitivity is enhanced by 
focusing on a quadrant of the scene to break symmetry, we start with this configuration for the vibrating ground 
system.  Since the ground scatters light diffusely, we begin our parameter study by fixing the viewing angle at 𝜋/3 
rad inclination, and 0 rad azimuthal, while varying the incoming solar illumination from 0.01 to 𝜋/2.  Plots of 
sensitivities are given in Figure 14.  We see that the lower the inclination angle of the sun in the sky, the higher the 
sensitivity.  We can understand this result since the projected area of each surface element in the direction of the sun 
changes by the greatest relative amount when the sun is low in the sky.  For sensor hardware sensitivity threshold in 
the range of 1e-4, we deduce that the sun should be lower than around 0.15 rad inclination in order for these 
vibrations to be detectible.   
 
Next, we vary the width of our FOV and hold the solar inclination fixed at 0.01 rad.  We find a maximum sensitivity 
of around 5e-3 at around 24 m wide field of view (or ~1/3 the dominant Rayleigh wavelength), as shown in Figure 
15.   
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Figure 14. Signals and Sensitivity Versus Solar Inclination For Ground System 
Sensitivities are plotted for varying incoming solar inclination angle for ground vibrating scene with sensor focused on 
one quadrant.  FOV dimensions are 50 x 50m. 
 
 

 
 
Figure 15.  Signals and Sensitivity Versus FOV Width For Ground System 
Sensitivities are plotted for varying width of field of view for ground vibrating scene with sensor focused on one 
quadrant.  Incoming sun inclination angle is 0.01 rad. 
 

5. Conclusions 

 
We have created a detailed numerical model that simulates signals generated from passively reflected light from 
varying types of surfaces.  We studied two systems in detail, a near-specularly reflecting building top and a diffusely 
scattering ground system subject to Rayleigh waves created by an underground vibrating structure.  We have learned 
that it is important to break symmetry by focusing on a quadrant of the system of interest to prevent cancellation 
effects that greatly diminish the variation in the observed signal.  One thing this points to is that we need sufficient 
sensor resolution such that, ideally, a pixel is focused on one quadrant of a building.  Also, if the sensor resolution 
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was very high, then algorithms could automatically combine signals from collections of multiple pixels in a near-
optimal way.  Additionally, observing a near-specularly reflective surface off the center of the lobe further enhances 
the contrast in the observed signal, since the gradient of the surface’s BRDF has its largest magnitude off center.  
Additionally, it may be possible to utilize a polarization filter in order to enhance sensitivity when light reflects off 
an insulator (like glass) at Brewster’s angle.  In practice, this would require such a high precision in both the 
incoming light and viewing angle that it would most likely be impractical.  For the diffusely scattering ground 
vibration system, we found that the lower the inclination angle of the sun in the sky, the higher the sensitivity.  
Furthermore, knowledge of the dominant vibration frequency would help to set the optimal width field of view at 
around 1/3 the corresponding Rayleigh wavelength.   
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