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August W. Bosse† Carlos J. Garćıa-Cervera‡ Glenn H. Fredrickson§¶

August 17, 2007

Abstract

We examine the effects of small-scale, hexagonal, lateral confinement on microdomain ordering in

AB diblock copolymer thin films using self-consistent field theory simulations. Specifically, we examine a

hexagonal confinement well with side length L approximately equal to five cylindrical microdomain lattice

spacings. The commensurability constraints of the small-scale, lateral confinement, coupled with surface-

induced effects allow the confining well to have a significant effect on the perfection of microdomain

order. We identify commensurability windows in L that depend on the segment–wall interaction and

the “temperature” annealing rate (modeled as a Flory χ ∼ 1/T annealing rate). The effect of added

majority-block homopolymer is also explored.

1 Introduction

Block copolymer (BCP) thin films represent a promising tool for generating sub-optical lithographic patterns

[22, 25, 8], and as such, ordering of hexagonally packed microdomains in BCP thin films has received much

attention in recent years [26, 27, 28, 1, 18]. In particular, there is considerable technological interest in using

self-assembled BCP microdomain arrays in next-generation, sub-micron fabrication techniques [21, 16, 4].

A BCP thin film consisting of a large array of microphase-separated spheres or cylinders can be used to
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pattern a substrate yielding a large array of O(10 nm) dots. Such dot arrays are potentially useful in next

generation high-density magnetic media and semiconductor devices [21]. However, if such devices are to be

realized, the dot arrays must exhibit high uniformity and order. This requirement translates into the need

for large, quasi-2D arrays of uniform, well-ordered BCP microdomains.

Unfortunately, it is difficult to generate large, 2D arrays of uniform, well-ordered microdomains. While

reasonably ordered micron-sized grains are often possible with exceptionally long thermal annealing times,

recent work by Segalman et al. suggests that large 2D arrays of BCP microdomains exhibit equilibrium

defect populations and defect-mediated melting transitions consistent with the Kosterlitz-Thouless-Halperin-

Nelson-Young (KTHNY) theory of 2D melting [26]. Accordingly, defect formation in large systems appears

to be unavoidable.

There has also been substantial work on enhancing order in thin film block copolymer systems. Pos-

sible techniques for inducing order include applied external fields (e.g., electric, sheer, etc.) and lateral

confinement, among others (for reviews of the various methods of enhancing order in BCP material, see

Refs. [22, 25, 8]). For example, Segalman et al. have examined the effects of a boundary on the ordering

of microdomains [27, 28]. In short, they observed increased microdomain order inside of a region extend-

ing approximately 4.75 µm from the boundary [for the polystyrene-b-(2-vinylpyridine) system studied, with

N = 670 and fPVP = 0.129, this is approximately 160 microdomain lattice spacings]. In addition, Ross and

coworkers have examined the effects of ordering and commensurability in small-scale confining channels and

near confining corners [7, 10, 8, 9]. These results suggest that template-directed assembly, and in particular

lateral confinement represents a promising tool for controlling microdomain order in BCP systems.

In this paper, we present a computational study of small-scale, lateral confinement as a means of control-

ling microdomain order in thin film BCP systems. Motivated by proposed and planned experiments involving

small-scale confinement [29], we focus on a hexagonally confined, cylinder-forming AB diblock copolymer

thin film, both with and without added A homopolymer. The lateral size of the hexagonal confining well

is selected such that nine cylinder rows fit across the hexagon (or, equivalently, five microdomains along an

edge, giving a total of 61 enclosed microdomains). This size roughly corresponds to proposed experimental

confinement sizes. The size of the hexagonal confining well can be made to be commensurate with the

hexagonal microdomain lattice formed by the bulk microphase-separated BCP. It is reasonable to suppose

that the confinement will have a significant effect on ordering in the relatively small hexagonal array of

microdomains.

The confined BCP system was simulated using a self-consistent field theory (SCFT) for polymer melts
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(for a more detailed account of SCFT, see Ref. [13]) where the hexagonal confinement well was modeled as

a fixed particle density (similar to the “masking” technique introduced by Matsen [20]). In our study, we

varied the side length of the confining hexagon and the sign of the segment–wall interaction to achieve either

A- or B-block wetting.

We demonstrate that the side length has an appreciable effect on the ordering of the confined mi-

crodomains. Furthermore, we identify a “commensurability window” of side lengths such that a near-perfect,

small-scale hexagonal array of microdomains is reproducibly obtained within the well. We examine the de-

pendence of the window’s width on the polymer–wall interaction, the temperature annealing rate (modeled

via the Flory χ parameter), and the fraction of majority-block A homopolymer added to the copolymer.

Finally, we explore the mechanisms by which the surfaces of the well induce order within the hexagonal

domain.

Our presentation is outlined as follows. In Sec. 2 we present the model and SCFT formalism for an AB +

A + wall system. In Sec. 3 we present our results; specifically, in Sec. 3.1 we examine the case of a quench to

a fixed Flory χ parameter (analogous to a quench from infinite temperature to a temperature corresponding

to χ). In Sec. 3.2 we examine the effects of controlled temperature annealing (i.e., χ annealing) during the

SCFT relaxation. In Sec. 3.3 we examine and discuss the effects of a majority-block homopolymer additive.

And finally, in Sec. 4 we close with a short summary and concluding remarks.

2 Model and Methods

A blend of AB block copolymers, A homopolymers, and fixed wall “particles” is modeled using a standard

Gaussian thread model with a Flory-type segment–segment and segment–wall interaction. The fixed wall

field and segment–wall interaction are modeled using a method similar to that introduced by Matsen [20].

In section 2.1 we outline the AB + A + wall model. and in section 2.2 we outline our numerical methods.

2.1 Model and SCFT

We consider an incompressible melt of nd monodisperse AB diblock copolymers, nh monodisperse A ho-

mopolymers, and nw wall “particles” in a volume V . The fraction of A-segment in the AB diblock is denoted

f , the index of polymerization of the AB diblock is denoted Nd = N , and the index of polymerization of the

A-homopolymer is denoted Nh = αN , so that the parameter α is defined by the ratio α ≡ Nh/N .

Each polymer is modeled as a continuous Gaussian chain, characterized by space curves rdi(s) and rhj(s),
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where i = 1, 2, ..., nd and j = 1, 2, ..., nh are polymer indices. For the AB diblock, the contour variable s

runs from s = 0 at the beginning of the A-block end to s = 1 at the end of the B-block end, with s = f

corresponding to the end of the A block and the beginning of the B block. For the A homopolymer, s

runs from s = 0 to s = α. We assume the statistical segment lengths of the A and B segments are equal,

bA = bB = b. Therefore, the unperturbed radius of gyration of the AB diblock is given by R2
g0 = b2N/6.

The volume occupied by A segments, B segments, and wall “particles” is given by 1/ρ0, where ρ0 is the

average total segment + wall density:

ρ0 ≡
ndN + nhαN + nw

V
. (1)

The AB + A + wall system is characterized by four microscopic densities. The microscopic diblock

A-segment density is given by

ρ̂Ad(r) = N

nd
∑

i=1

∫ f

0

ds δ(r − rdi(s)), (2)

the microscopic homopolymer A-segment density is given by

ρ̂Ah(r) = N

nh
∑

j=1

∫ α

0

ds δ(r − rhi(s)), (3)

and the microscopic total A-segment density is defined by

ρ̂A(r) = ρ̂Ad(r) + ρ̂Ah(r) (4)

Likewise, the microscopic B-segment density is given by

ρ̂Bd(r) = N

nd
∑

i=1

∫ 1

f

ds δ(r − rdi(s)). (5)

Finally, the microscopic wall “particle” density ρw(r) is a predetermined, fixed function with 0 ≤ ρw(r) ≤ ρ0,

for all r. We use this function to model a confinement well, and we often use the term wall field to refer to

the microscopic wall “particle” density ρw(r). Melt incompressibility requires that the microscopic densities

locally sum up to the average total segment + wall density:

ρ̂A(r) + ρ̂B(r) + ρw(r) = ρ0. (6)
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Alternatively, we can express Eq. (6) as

ρ̂A(r) + ρ̂B(r) = ρ(r), (7)

where we have introduced the fixed total segment density

ρ(r) = ρ0 − ρw(r). (8)

In the canonical ensemble, the partition function of the AB + A + wall system is given by functional

integrals over all configurations of all the polymer space curves:

Z =

∫ nd
∏

i=1

δrdi

nh
∏

j=1

δrhj δ[ρ̂A + ρ̂B + ρw − ρ0]e
−U0−UI , (9)

where

U0 =
1

4R2
g0

nd
∑

i=1

∫ 1

0

ds

∣

∣

∣

∣

drdi(s)

ds

∣

∣

∣

∣

2

+
1

4R2
g0

nh
∑

j=1

∫ α

0

ds

∣

∣

∣

∣

drhj(s)

ds

∣

∣

∣

∣

2

, (10)

and

UI =
1

ρ0

∫

V

dr [χρ̂A(r)ρ̂B(r) − χwAρw(r)ρ̂A(r) − χwBρw(r)ρ̂B(r)] . (11)

Here χ is the Flory parameter for A-segment–B-segment interactions, χwA is the Flory-like parameter

for wall–A-segment interactions, and χwB is the Flory-like parameter for wall–B-segment interactions. In

Eq. (9), δ[ρ̂A + ρ̂B + ρw − ρ0] is a delta functional that enforces the incompressibility of the polymer melt at

all points in the domain.

Note that

χwAρ̂A + χwB ρ̂B = χwρ̂− +
χwA

2
ρ̂+ +

χwB
2

ρ̂+, (12)

where

χw ≡
χwA − χwB

2
, (13)

ρ̂± = ρ̂A ± ρ̂B , (14)

and we have dropped the explicit r dependence for clarity. Using Eqs. (12), (13), and (14), and explicitly
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enforcing the incompressibility constraint, ρ+(r) = ρ(r), gives

UI = −
χ

4ρ0

∫

V

dr

[

ρ̂−(r) + 2
χw
χ
ρw(r)

]2

, (15)

up to a constant shift in energy. We now write the interaction terms as follows (again, we elect to drop

explicit r dependence),

e−UI = exp

[

χ

4ρ0

∫

V

dr

(

ρ̂− + 2
χw
χ
ρw

)2
]

=

∫

δw− exp

{
∫

V

dr

[(

ρ̂− + 2
χw
χ
ρw

)

w− −
ρ0

χ
w2

−

]}

. (16)

We also represent the delta functional in Eq. (9) as a functional integral:

δ[ρ̂+ − ρ] =

∫

δw+ exp

[

−i

∫

V

dr (ρ̂+ − ρ)w+

]

. (17)

After some manipulations, we arrive at the following expression for the partition function in terms of

conjugate potential fields W± = Nw±:

Z =

∫

δW+δW−e
−H[W+,W−], (18)

where

H[W+,W−] = C

∫

V

dx

[

1

χN
W 2

−(x) − iφ(x)W+(x) − 2
χw
χ
φw(x)W−(x)

]

−C(1 − ϕh)φ̄V logQd[WA,WB ] − C
ϕhφ̄V

α
logQAh[WA]. (19)

Here C ≡ ρ0/N , φ(x) ≡ ρ(x)/ρ0, φw(x) ≡ ρw(x)/ρ0, WA = iW+−W−, and WB = iW++W−. Furthermore,

all lengths have been scaled by the radius of gyration of the AB diblock copolymer where x = r/Rg0; for

example, the system volume is expressed as a dimensionless variable, V/R3
g0 → V . The quantity φ̄ ≡

(1/V )
∫

V
dx φ(x) = (ndN + nhαN)/(ndN + nhαN + nw) represents the average segment volume fraction of

the entire system (i.e., the volume fraction of the system that corresponds to polymer segments), and the

quantity ϕh = nhαN/(ndN + nhαN) represents the fraction of segments that belong to A homopolymers.

The single-chain partition functions Qd[WA,WB ] and Qh[WA] can be expressed in terms of the “forward
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propagators” qd(x, s; [WA,WB ]) and qh(x, s; [WA,WB ]) as follows:

Qd[WA,WB ] =
1

V

∫

dx qd(x, 1; [WA,WB ]), (20)

and

Qh[WA,WB ] =
1

V

∫

dx qh(x, α; [WA,WB ]), (21)

where qd(x, s; [WA,WB ]) satisfies

∂

∂s
qd(x, s; [WA,WB ]) = ∇2qd(x, s; [WA,WB ]) − ψd(x, s)qd(x, s; [WA,WB ]), (22)

subject to the initial condition qd(x, 0; [WA,WB ]) = 1 with

ψd(x, s) =











WA(x), 0 < s < f

WB(x), f < s < 1,
(23)

and qh(x, s; [WA,WB ]) satisfies

∂

∂s
qh(x, s; [WA,WB ]) = ∇2qh(x, s; [WA,WB ]) −WA(x)qh(x, s; [WA,WB ]), (24)

subject to the initial condition qh(x, 0; [WA,WB ]) = 1. The average microscopic volume fractions φAd, φAh,

and φB can be expressed as integrals over the propagators:

φAd(x; [WA,WB ]) =
(1 − ϕh)φ̄

Qd

∫ f

0

ds qd(x, s; [WA,WB ])q†d(x, 1 − s; [WA,WB ]), (25)

φAh(x; [WA,WB ]) =
ϕhφ̄

αQh

∫ α

0

ds qh(x, s; [WA,WB ])qh(x, α− s; [WA,WB ]), (26)

and

φB(x; [WA,WB ]) =
(1 − ϕh)φ̄

Qd

∫ 1

f

ds qd(x, s; [WA,WB ])q†d(x, 1 − s; [WA,WB ]), (27)

where the “backward propagator” q†d(x, s; [WA,WB ]) satisfies the following differential equation:

∂

∂s
q†d(x, s; [WA,WB ]) = ∇2q†d(x, s; [WA,WB ]) − ψ†

d(x, s)q
†
d(x, s; [WA,WB ]), (28)
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subject to the initial condition q†d(x, 0; [W±]) = 1 with

ψ†
d(x, s) =











WB(x), 0 < s < 1 − f

WA(x), 1 − f < s < 1.
(29)

In the formal C → ∞ limit, we use the saddle-point approximation to find mean-field configurations of

the conjugate fields W±. The saddle point equations are given by the standard expressions:

δH[W+,W−]

δW+(x)

∣

∣

∣

∣

W̃±

= iC
[

φAd(x; [W̃±]) + φAh(x; [W̃±]) + φB(x; [W̃±]) − φ(x)
]

= 0, (30)

and

δH[W+,W−]

δW−(x)

∣

∣

∣

∣

W̃±

=
[

(2/χN)W̃−(x) − 2(χw/χ)φw(x)−

φAd(x; [W̃±]) − φAh(x; [W̃±]) + φB(x; [W̃±])
]

= 0, (31)

where W̃± are the saddle point values of W±. The saddle point value of W+ is strictly imaginary, and

the saddle point value of W− is strictly real [15, 13]. Accordingly, we define a real-valued pressure field

Ξ = iW̃+ = −Im[W̃+] and a real-valued composition field W = W̃− = Re[W̃−]. This gives the following

saddle point equations:

φAd(x) + φAh(x) + φB(x) − φ(x) = 0, (32)

and

(2/χN)W (x) − 2(χw/χ)φw(x) − φAd(x) − φAh(x) + φB(x) = 0. (33)

We solve these equations by introducing a time variable t and relaxing the fields forward in “time” in the

direction of the thermodynamic forces. The saddle point search is formally given by

∂

∂t
Ξ(x, t) =

δH[Ξ,W ]

δΞ(x, t)
, (34)

∂

∂t
W (x, t) = −

δH[Ξ,W ]

δW (x, t)
. (35)

Clearly, Eqs. (32) and (33) are satisfied when Eqs. (34) and (35) are stationary.

This completes the standard framework for the SCFT of an AB + A + wall system. The mean-field

configurations Ξ and W are found by iterating the following scheme:
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1. Initialize the pressure and composition fields, Ξ(x, 0) and W (x, 0).

2. Solve the modified diffusion equations for qd(x, s), q
†
d(x, s), and qh(x, s).

3. Calculate Q, φAd, φAh, and φB .

4. Update Ξ(x, t) and W (x, t) by integrating Eqs. (34) and (35) forward over a time interval ∆t.

5. Repeat steps 2–5 until a convergence criterion has been met.

More complete details of the Gaussian thread model and polymer SCFT can be found in Ref. [13].

The wall field φw(x) = ρw(x)/ρ0 is a fixed function of x that is specified before starting the SCFT

simulations. We select φw(x) to be a regular hexagonal pattern centered about the midpoint of the simulation

space. The interior of the hexagon is set to φw(x) = 0, and the exterior of the hexagon is set to φw(x) = 1,

with a narrow, smooth transition region connecting the interior and exterior. The incompressibility constraint

Eq. (6) restricts polymer segments to the interior of the hexagon. In other words, the fixed wall field φw(x)

acts as a confinement well for the segments of the fluid.

In order to minimize the number of required Fourier modes needed to resolve the φw(x) = 0 to φw(x) = 1

transition region, and in order to retain the stability characteristics of standard saddle point search methods

(to be discussed below), the transition is selected to be a hyperbolic tangent form:

φw(x) =
1

2

[

1 + tanh

(

z
d⊥(x)

δ

)]

, (36)

where z and δ are factors used to define the transition region and set the width of the transition region,

respectively, and d⊥(x) is defined as the distance from the point x to the nearest edge of the boundary of

the hexagonal well. The boundary of the hexagonal well is defined to be at the midpoint of the smooth

transition region (i.e., where φw(x) = 1/2). We select z such that the wall transition region is defined to

begin at φw(x) = 0.01 and end at φw(x) = 0.99 with a width of δ. This gives z = log(99) ≈ 4.5951. We do

not expect the specific value of δ selected to affect the results, provided that δ is approximately equal to the

AB interface width (i.e., a fraction of 1Rg0).
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2.2 Numerical Methods

In order to simulate the 2D AB + A + wall system, we sample all relevant fields on a square, periodic lattice

in x and y:

xi = i∆x, i = 0, ..., nx − 1,

yj = j∆y, j = 0, ..., ny − 1,
(37)

where nx and ny are the number of lattice points in the x and y directions, respectively, ∆x = Lx/nx and

∆y = Ly/ny are the grid spacings, Lx is the length of the system in the x direction, and Ly is the length of

the system in the y direction. We will subsequently use a single, bold-face index i to represent the ordered

pair (i, j). It is important to note that the above defined discretization represents a uniform collocation grid

allowing for the use of fast Fourier transforms (FFTs).

The system is assumed to be uniform but finite in the z direction, and the film thickness is denoted Lz.

Under this assumption, the film thickness always appears as a constant factor in combination with C. In

SCFT, the factor of C, and thus Lz, is absorbed into the relaxation time step ∆t, discussed below. With

the above defined simulation space, the volume of the system is denoted V = LxLyLz and the total number

of lattice points is given by M = nxny.

We also discretize the chain contour variable s:

sm = m∆s, m = 0, ..., ns, (38)

where ns is the number of steps along the polymer backbone, and ∆s = 1/ns is the contour step size. The

fictitious time variable t is also discretized:

tn = n∆t, n = 0, ..., nt. (39)

The value of ∆t selected depends on the method used to solve the relaxation equations (discussed below),

and nt defines the total number of SCFT iterations used to relax the saddle point equations.

In step 2 of the SCFT algorithm, outlined in section 2.1, we solve the modified diffusion equations using

the pseudo-spectral operator splitting method developed by Rasmussen and coworkers [32, 23]. That is,

motivated by both the formal solution,

q(x, s+ ∆s) = e∆sLq(x, s), (40)
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with the initial condition q(x, 0) = 1, and the Baker-Campbell-Hausdorff identity [24], we perform an O(∆s2)

splitting of e∆sL:

e∆sL = e−∆sψ(x,s)/2e∆s∇
2

e−∆sψ(x,s)/2 + O(∆s3), (41)

where L ≡ ∇2−ψ(x, s). The function ψ(x, s) is diagonal in real space, and the Laplacian operator is diagonal

in Fourier space; thus, e−∆sψ(x,s)/2 is evaluated in real space and e∆s∇
2

in Fourier space. As mentioned

above, the collocation grid allows us to move between real and Fourier space using the fast Fourier transform

(FFT).

The time integration of Eqs. (34) and (35) is performed using an explicit, forward-Euler algorithm:

Ξn+1
i

= Ξn
i

+ ∆t
∂H[Ξn,Wn]

∂Ξn
i

, (42)

Wn+1
i

= Wn
i
− ∆t

∂H[Ξn,Wn]

∂Wn
i

, (43)

where superscripts n represent discrete steps in the time variable t. As indicated above, C and Lz are

constant factors in the Hamiltonian H[Ξn,Wn]; therefore, they represent a modification to the Euler time

step ∆t. Henceforth, we use the symbol ∆t to represent the total time step ∆tCLz.

We use as a convergence criterion the L1 norm of the sum of the thermodynamic forces at SCFT iteration

n [6]:

En ≡

∣

∣

∣

∣

δH[Ξn,Wn]

δΞn
+
δH[Ξn,Wn]

δWn

∣

∣

∣

∣

1

=

1

M

M
∑

i

∣

∣

∣

∣

∂H[Ξn,Wn]

∂Ξn
i

+
∂H[Ξn,Wn]

∂Wn
i

∣

∣

∣

∣

. (44)

Clearly, a completely relaxed saddle point solution gives Ent
= 0.

3 Results and Discussion

In order to examine how hexagonal, lateral confinement affects ordering in block copolymer thin films, we

simulated AB + A + wall systems in 2D using SCFT, as discussed above. The results of these simulations

are presented below.

For all simulations we set f = 0.7—with this choice we identify the A block as the majority block1. For

1Throughout this paper we will often use the terms “A block” and “majority block” interchangeably. Clearly, the identifi-
cation of the majority block depends on the specification of f ; however, in this study the value of f is fixed at f = 0.7 and thus
we identify the A block as the majority block.
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the quenched simulations presented in Sec. 3.1, χN was held fixed at χN = 17. This value of f and χN

yields saddle point solutions corresponding to a hexagonally ordered cylindrical microphase. For the χN

annealing simulations presented in Sec. 3.2, χN was ramped from χN = 12 to the final value of χN = 17.

The value of χwN was selected to be χwN = 17, χwN = 0, or χwN = −17 for A-attractive, neutral, or

B-attractive walls, respectively. For the AB diblock simulations (Secs. 3.1 and 3.2), the A homopolymer

fraction was set to ϕh = 0, and for the AB + A blend simulations (Sec. 3.3), the A homopolymer fraction

was set to ϕh = 0.20, indicating that the blend is 20 % A homopolymer. The A homopolymer length was

selected to be 35 % percent of the copolymer length, α = 0.35.

The system size was chosen as Lx = Ly = 48; this system size allowed us to explore a wide range of

possible hexagon sizes, up to a maximum hexagon side length of approximately L = 24. The wall transition

region width was selected to be δ = 1. We were interested in hexagon side lengths that yielded nine rows

of microdomains across the hexagon, or equivalently five microdomains along an edge. There are exactly 61

microdomains contained in such a confining hexagon. With this in mind we focused on a range of hexagon

side lengths between L = 14.00 and L = 23.00.

The spatial resolution was selected in order to resolve both the A–B interfaces and the wall transition

region. We found that ∆x = ∆y = 0.25 was a sufficient resolution for our purposes; therefore, we set

nx = ny = 192. The number of polymer contour steps was selected to be ns = 50. These parameters allowed

for sufficiently accurate evaluation of the energy functional (Hamiltonian) H[Ξ,W ] in order to differentiate

between the various systems of interest (specifically, the various values of hexagon side length L).

For all simulations presented here, the Euler SCFT time step was selected to be ∆t = 2. Larger time

steps resulted in stability problems. The total number of SCFT iterations was set to nt = 20 000, unless

otherwise indicated. For the Euler update discussed above, with ∆t = 2 and nt = 20 000, we were able to

determine the saddle point solutions Ξ and W with Ent
= O(10−5). Using the above simulation parameters

(nx = ny = 192, ns = 50, and nt = 20 000), the average single simulation run time was approximately 7

hours on a dedicated compute node. A total of 935 full production runs were carried out giving a total of

approximately 6545 compute-hours2.

In order to identify the the window in L that yielded a well-ordered array of microdomains (henceforth

called the commensurability window), we measured the average standard deviation (SD) of nearest neighbor

(NN) microdomain separations inside the confining hexagon 〈σ〉. This average was calculated from five or

2This total run time estimate does not include the test/control runs with 37 enclosed microdomains presented in Sec. 3.4.
The results presented in Sec. 3.4 required 855 additional simulations, each requiring approximately four hours of runtime on a
dedicated compute node. This amounts to an additional 3420 compute-hours for a total of 9965 total compute-hours (equal to
approximately 415 compute-days).
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ten independent simulations, started from five or ten distinct random initial conditions (we used ten indepen-

dent initial conditions for our quenched simulations and five independent initial conditions for our annealed

simulations). When defects form, the nearest neighbor separation between microdomains will change locally

(near the defects). Therefore, we expect to see a defect-induced jump in the standard deviation of near-

est neighbor microdomain separations. We use the notation ΛN (χwN) to represent the commensurability

window with exactly N enclosed microdomains for a specific value of χwN .

For side lengths L outside of the commensurability window, we observed microdomain defect formation as

a result of deviations from exactly N = 61 enclosed microdomains discussed above. Accordingly, a deviation

from 61 enclosed microdomains indicates a defective array. However, the jump in 〈σ〉 is much more abrupt

(nearly an order of magnitude in 〈σ〉 over a change in hexagon side length of ∆L ≈ 0.50), and thus we use

〈σ〉 as our primary metric for identifying commensurability windows.

3.1 AB Quenched Simulations

Here we present results for a quench to χN = 17 (modeled as a SCFT relaxation from random initial

conditions at a fixed χN = 17) for the AB + wall system presented above. There is no A homopolymer

present in this system, so we set ϕh = 0.

In Fig. 1, we present graphs of 〈σ〉 vs. L for the AB diblock system with an A-attractive wall (χwN = 17),

neutral wall (χwN = 0), and B-attractive wall (χwN = −17). Recall, for f = 0.7, the A block is the majority

block. From Fig. 1(a) we see that the commensurability window for the A-attractive wall is given by Λ61(17) =

[15.75, 17.00]. This window defines the region in L inside which we observed a well-ordered, hexagonal array

of 61 microdomains for all ten sampled random initial conditions and high uniformity in microdomain size

and shape. For L inside of the commensurability window 〈σ〉 ≈ 0.05, and outside the window 〈σ〉 is larger

by approximately one order of magnitude. From Fig. 1(b) we see that the commensurability window for the

neutral wall is given by Λ61(0) = [18.50, 18.75]. Finally, from Fig. 1(c) we see that the commensurability

window for the B-attractive wall is given by Λ61(−17) = [18.75, 19.25].

In Fig. 2, we present representative compositions profiles and their corresponding Voronoi diagrams for

A-attractive, neutral, and B-attractive walls. The composition profiles and Voronoi diagrams indicate the

presence of defects for values of L outide of Λ61(χwN) and the presence of a well-ordered array for values of

L inside of Λ61(χwN).

It is important to note that the commensurability windows identified for the neutral and B-attractive

walls are considerably smaller than the commensurability window identified for the A-attractive wall. In
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Figure 1: Graphs of 〈σ〉 vs. L for an AB melt after a quench from random initial conditions to χN = 17
for (a) an A-attractive wall (χwN = 17), (b) a neutral wall (χwN = 0), and (c) an B-attractive wall
(χwN = −17). For each case, there is a region in L (the commensurability window) inside which there is a
perfect array of 61 hexagonally ordered microdomains.
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Figure 2: Representative composition profiles (lighter shades correspond to larger values of φA) and their
corresponding Voronoi diagrams (hexagon in white, pentagon in gray, and heptagon in black) for (a)-(c) an
A-attractive wall, (d)-(f) a neutral wall, and (g)-(i) a B-attractive wall. For the A-attractive wall, we plot
composition profiles and their corresponding Voronoi diagrams for (a) L = 15.00, (b) L = 16.25, and (c)
L = 17.75. For the neutral wall, we plot composition profiles and their corresponding Voronoi diagram for
(d) L = 17.75, (e) L = 18.50, and (f) L = 19.50. Finally, for the B-attractive wall, we plot composition
profiles and their corresponding Voronoi diagram for (g) L = 18.00, (h) L = 19.00, and (i) L = 20.00.
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fact, the commensurability window for the A-attractive wall is 2.5 times larger than the window for the

B-attractive wall and five times larger than the window for the neutral wall. Furthermore, there appears

to be a tendency for the defects to form along the confining wall for L < min[Λ61(χwN)] and in the center

of the hexagon for L > max[Λ61(χwN)]. The above identification of commensurability windows may have

important technological applications. The simulation results suggest that if one can engineer a confining wall

that attracts the majority block, then one may be able to exploit wider tolerances in L when constructing

a confining hexagon.

It is not immediately obvious why the commensurability window for a majority-block-attractive wall

should be wider than the window for neutral or minority-block-attractive walls. We can gain some insight

into this observation by examining microphase development near the wall.

The above simulations essentially model a quench to a temperature corresponding to χN = 17 [11]. In

the bulk (i.e., far away from a wall), there are two particularly important values of χN for an asymmetric

diblock (i.e., f 6= 0.5). First, there is the microphase separation transition (MST) value [19], denoted

(χN)MST. Second, there is the spinodal value, denoted (χN)S [19]. For the diblock system of interest

in this paper, with f = 0.7, (χN)S ≈ 15 and (χN)MST ≈ 14.75 [19]. If χN is selected to be below

the MST value χN < (χN)MST then the composition profiles in a bulk simulation will rapidly relax to a

homogeneous (also called disordered) state with φA(x) = f and φB(x) = 1 − f . For a bulk simulation with

(χN)MST < χN < (χN)S, the homogeneous (disordered) phase is metastable, and microphase separation

can proceed via nucleating of the ordered phase (for a discussion of nucleation of the lamellar microphase

in BCP systems see [14, 17]). In this metastable region, the disordered phase BCP scattering function

S(k) is strongly peaked around k = k0, corresponding to the periodicity of the microphase. Finally, as χN

approaches (χN)S, the disordered phase scattering function diverges at k0, the homogeneous phase becomes

unstable (i.e., nucleation barriers vanish), and the system rapidly microphase separates. In other words, for

χN > (χN)S, we expect rapid, global microphase separation on a length scale corresponding to 2π/k0. For

symmetric diblock copolymers (f = 0.5) in the mean-field limit (C → ∞), the values of (χN)MST and (χN)S

coincide, and for weakly asymmetric diblocks, the values are nearly coincident.

Microphase development of asymmetric BCPs near a boundary is complicated and rather subtle [12,

30, 31, 5, 2, 3]. Accordingly, when necessary we draw comparisons from work on symmetric and weakly

asymmetric BCPs. For example, Fredrickson showed that if a boundary has a preferential attraction to one

component of a symmetric or weakly asymmetric diblock copolymer, one observes low-amplitude composition

oscillations that extend into the bulk, with a magnitude that dies off exponentially [12]. These composition
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oscillations are observed in the disordered (homogeneous) phase, for temperatures well above the spinodal

temperature [or equivalently, χN < (χN)S]. As the system is cooled towards the spinodal temperature,

the composition oscillations increase in magnitude and penetration depth, extending increasingly far into

the bulk [12]. As ǫ = |χN − (χN)S|/(χN)S → 0, the magnitude of the composition oscillations approach

the bulk microphase separation values, yielding a “wetting layer” with thickness w ∝ log ǫ that diverges

logarithmically as ǫ→ 0 (e.g., see [2]).

For quenches into the ordered phase [i.e., χN > (χN)S], Brown and Chakrabarti demonstrated that

composition oscillations form near the boundary and propagate into the bulk [5]. Furthermore, they showed

that the long-time form of the quenched χN > (χN)S composition profiles are well fit by the functional form

identified by Fredrickson [14] for χN < (χN)S composition oscillations [5].

For the block copolymer system of interest here, the B segments microphase-separate to form a mi-

crodomain lattice. Therefore, it is useful to examine the order parameter

ψ(x, t) = φB(x, t) − (1 − f)φ(x) (45)

where, as discussed above, φ(x) = 1 − φw(x) is the fixed total segment fraction function. In Fig. 3 we plot

ψ(x, y, t) vs. x at y = 24 [i.e., ψ(x, 24, t) vs. x], averaged over ten independent random initial conditions,

for a AB diblock quenched to χN = 17, and confined by a L = 17.75 hexagonal wall. The line y = 24 is

a perpendicular bisector of two opposite edges of the confining hexagon. The order parameter ψ(x, 24, t) is

plotted at iteration times t = 20∆t, 40∆t, and 80∆t during the saddle point search. Here we only plot the A-

attractive and B-attractive wall interactions. We can clearly see composition oscillations near the boundary

at x ≈ 8.6. These oscillations extend into the center of the hexagon and appear to rapidly decay. The

shape and time-dependence of the composition oscillations appears to be consistent with the surface-induced

microphase separation phenomena referenced above [5].

Of primarily importance in Fig. 3 is the observation that, when ignoring the surface layer, the first peak

in ψ inside of the boundary is larger for the A-attractive wall than for the B-attractive wall. The first

peak in ψ inside of the boundary has the significance of corresponding to the first interior B cylinder-like

microdomain. The additional peaks in ψ that are even further inside the well are also larger for the A-

attractive wall. Furthermore, we can see that all of the interior composition peaks remain larger for the

A-attractive wall over all times reported in Fig. 3. In Fig. 4 we superimpose plots of ψ(x, 24, t) vs. x for

A-attractive and B-attractive walls, averaged over ten independent random initial conditions. We also shift
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Figure 3: Graphs of ψ(x, 24, t) vs. x, averaged over ten independent random initial conditions, for (a) A-
attractive wall (at point “A”) and (b) B-attractive wall (at point “B”). In both figures, we plot ψ(x, 24, t)
at t = 20∆t (dashed), 40∆t (dotted), and 80∆t (dashed-dotted).
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the order parameter curves in Fig. 4 so that the first interior composition peaks (not the surface enrichment

layer) are aligned. With the order parameter curves superimposed and aligned, the larger peaks in ψ for the

A-attractive wall are more easily identified. The difference in peak size is due to the rapid decay envelope

[12, 5]. For the case where A-segment is attracted to the wall, the polymer architecture dictates that the first

B microdomain forms much closer to the wall than for the B-attractive wall; accordingly, during the early

stages of microphase separation near the surface, the amplitude for the positive peaks in ψ will be larger for

the A-attractive wall.

The positive peaks in ψ correspond to points of increased B-segment fraction. The microphase-separated

B microdomains form at or around these locations. Since the peaks in ψ are larger in amplitude for the

A-attractive walls, we expect the A-attractive wall to have more influence over the enclosed B microdomains

than the B-attractive wall. This is precisely what is illustrated in Fig. 1.

Even though the resulting microphases have similar lattice constants (i.e., nearest neighbor separations),

as can be appreciated in Fig. 2, the polymer architecture also dictates that the confinement scale for the

A-attractive wall is smaller than for the neutral or B-attractive wall (see Fig. 2). This smaller-scale con-

finement, coupled with the architectural dependencies of surface-induced phase separation suggests that the

A-attractive wall will have more influence over the B microdomain formation (and thus ordering), when

compared to neutral or B-attractive walls.

We have largely ignored the neutral wall up until this point. This is because the neutral wall appears

to both quantitatively (Fig. 1) and qualitatively (Fig. 2) resemble the B-attractive wall. That is, the B

segments are attracted to the neutral wall much like the B-attractive wall, and the size and width of the

commensurability windows are similar for the neutral and B-attractive walls.

In addition to the wall’s role in surface-induced microphase separation phenomena, the shape of the

well helps orient the microdomains in a way that is commensurate with a hexagonal lattice. Provided the

hexagon side length is carefully selected [i.e., L ∈ ΛN (χwN)], the hexagonal shape of the boundary will work

to encourage the surface-induced composition waves to form a well-ordered hexagonal microphase array.

We noted above that for L below the observed commensurability windows, defects tend to form along the

wall. This is most likely due to direct incommensurability effects. That is, the side length is not commen-

surate with the natural microdomain cylinder spacing. In contrast, for L above the ordered window, defects

primarily form inside the confining hexagon. This kind of defect formation likely involves incommensurability

effects as well; however, it may also involve a competition between surface-induced microphase separation

and bulk microphase separation. Simply stated, the wall will have less influence over the central region for
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Figure 4: Shifted graphs of ψ(x, 24, t) vs. x, averaged over ten independent random initial conditions, at
(a) t = 20∆t and (b) 40∆t. In both figures, we plot ψ(x, 24, t) for an A-attractive wall (dashed) and a B-
attractive wall (dotted). The A- and B- attractive wall positions are marked as “A” and “B,” respectively.
The ψ(x, 24, t) curves have been shifted in x so that the first interior order parameter peaks (at point “P”)
are aligned. This allows for an easy visual comparison of the peak heights.
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larger systems than for smaller systems.

One could imagine that controlled χN annealing from below (χN)MST and (χN)S to a final value above

(χN)MST and (χN)S could “magnify” the effects of the hexagonal well on microdomain ordering by allowing

composition oscillations to slowly set in and eventually form a well defined, partially microphase-separated

surface layer, as referenced above. As (χN)MST is crossed, the surface layer will encourage further ordering,

and then once (χN)S is crossed, bulk microphase separation will occur throughout the inside of the hexagon.

We study such an annealing situation below.

3.2 AB Annealed Simulations

As mentioned above, composition oscillations appear near the boundary for values of χN below (χN)MST.

In Fig. 5 we present representative equilibrium density composition profiles for A-attractive (χwN = 17) and

B-attractive (χwN = −17) walls at χN = 12 and χN = 14. Recall that (χN)MST ≈ 14.75 for our system

with f = 0.7, so these values of χN correspond to the homogeneous (disordered) phase. With the exception

of χN , we used the exact same system and simulation parameters discussed above. Each of these simulations

were run at fixed χN for nt = 20 000 field iterations. At χN = 12 we observe composition oscillations near

the wall, even though the system has not undergone a bulk microphase separation, and at χN = 14 we

identify well defined microphase separation and ordering near the wall, again, even though the system has

not undergone a bulk microphase separation. It is our hope to take advantage of these surface-induced

composition oscillations, microphase separation, and ordering by slowing annealing from below (χN)MST.

In order to further examine surface-induced microphase separation and ordering effects, we developed a

(relatively) slow χN annealing scheme. Specifically, we annealed χN from χN = 12 < (χN)MST, through

(χN)MST and (χN)S, to the final value of χN = 17. We incremented χN by 0.25 every 500 SCFT time steps,

beginning at t = 500∆t and ending at 10 000∆t. We then further relaxed the system using the standard

SCFT saddle point search at fixed χN = 17 until nt = 20 000. Well defined surface-induced microphase

separation was observed during the anneal [much like the example presented in Fig. 5(b) and Fig. 5(d)], and

this ordered layer facilitated formation of a hexagonal lattice once (χN)S was crossed and bulk microphase

separation occurred.

The result of the annealing runs for an A-attractive wall (χwN = 17), a neutral wall (χwN = 0), and a

B-attractive wall (χwN = −17) are presented in Fig. 6. We note that in all three cases the χN annealing

increased the width of the commensurability window compared to those presented in Sec. 3.1. For the

A-attractive wall, the commensurability window is given by Λ61(17) = [15.75, 17.75]. For the neutral wall,
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Figure 5: Representative equilibrium density composition profiles (lighter shades correspond to larger values
of φA) for (a) A-attractive wall at χN = 12, (b) A-attractive wall at χN = 14, (c) B-attractive wall at
χN = 12, and (d) B-attractive wall at χN = 14.
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Figure 6: Graphs of 〈σ〉 vs. L for an AB melt after a χN anneal from from random initial conditions at
χN = 12 to χN = 17 for (a) an A-attractive wall (χwN = 17), (b) a neutral wall (χwN = 0), and (c) an
B-attractive wall (χwN = −17). Again, for each case, there is a commensurability window in L inside which
there is a perfect array of 61 hexagonally ordered microdomains.

23



the commensurability window is given by Λ61(0) = [17.25, 19.75]. And finally, for the B-attractive wall, the

commensurability window is given by Λ61(−17) = [17.75, 19.75]. The χN annealing has effectively equalized

the ordering effects of the A-attractive, neutral, and B-attractive walls.

For the annealed systems presented here, defects likely form as the result of direct incommensurability

conditions. That is, for small or large systems the elastic strain energy is too great to maintain a perfect

lattice for the specific hexagon side length, and as a result microdomain defects form. If one were able

to minimize the energy of distortion associated with a highly incommensurate confining hexagon, perhaps

the width of the commensurability window could be increased further. In the next section we examine the

possibility of relieving chain stretching in the majority block coronas with a majority-block homopolymer

additive, and thus increase the width of the commensurability window .

3.3 AB + A Annealed Simulations

In this section we examine the effects of adding an majority-block homopolymer (i.e., A homopolymer) to

the AB + wall system studied above. The fraction of A homopolymer is fixed at ϕh = 0.20 so that 20 % of

the melt is A homopolymer, and the A homopolymer length is selected to be α = 0.35. Given the obvious

advantages of χN annealing, all simulations presented in this section were run using the χN annealing

scheme outlined in Sec. 3.2.

In Fig. 7 we plot 〈σ〉 vs. L for the AB + A blend with a A-attractive wall (χwN = 17), a neutral

wall (χwN = 0), and an B-attractive wall (χwN = −17). Qualitatively these results are very similar to

the those presented in Fig. 6 for the AB melt; however, there are a few important differences. First of all,

each of the commensurability windows in Fig. 7 are shifted to larger values of hexagon side length L. This

is because the matrix in the AB + A blend is swollen (as a result of the presence of the A homopolymer)

resulting in a larger average NN distance for the ordered microphase. Specifically, with the addition of

20 % A-homopolymer, the NN separations increased by approximately 6 % for the A-attractive wall, 10

% for the neutral wall, and 8 % for the B-attractive wall. In addition, the commensurability window for

the majority-block-attractive wall (χN = 17), illustrated in Fig. 7(a), is considerably smaller than for the

annealed AB melt, illustrated in Fig. 6(a). This is because the A homopolymer tends to aggregate along

the wall, producing an A-homopolymer “wetting” layer. This layer is clearly visible in Fig. 8(a). The A

homopolymer aggregation along the wall hinders the effectiveness of the A homopolymer at reducing chain

stretching in the microphase matrix. In fact, the aggregation appears to actually reduce the width of the

commensurability window. On the other hand, from Figs. 7(b) and 7(c) we can see that the commensurability
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Figure 7: Graphs of 〈σ〉 vs. L for an AB + A blend after a χN anneal from random initial conditions at
χN = 12 to χN = 17 for (a) an A-attractive wall (χwN = 17), (b) a neutral wall (χwN = 0), and (c) an
B-attractive wall (χwN = −17). Again, for each case, there is a commensurability window in L inside which
there is a perfect array of 61 hexagonally ordered microdomains.
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(a) (b) (c)

Figure 8: Representative composition profiles for an AB + A + wall system (lighter shades correspond
to larger values of φAh—the A homopolymer fraction) with (a) an A-attractive wall with L = 17.50, (b)
a neutral wall with L = 19.75, and (c) a B-attractive wall with L = 20.25. The absolute coloring is not
important here, just the relative coloring in each frame. In frame (a) the area with the highest concentration
of light coloring is along the hexagon wall. This indicates that the A homopolymer is aggregating along the
A attractive wall. For frames (b) and (c) the A homopolymer concentration distribution appears to be much
more uniform throughout the microphase matrix.

windows for the neutral and minority-block-attractive walls appear to be about the same size as reported in

Sec. 3.2, albeit shifted to larger values of L. Furthermore, the homopolymer appears to be evenly distributed

inside the hexagon for the neutral and B-attractive walls as illustrated in Figs 8(b) and 8(c).

The slight shift in L for the commensurability windows may offer enough of a technological advantage to

warrant incorporation of majority-block homopolymer in real-world studies of small-scale, lateral confinement

of block copolymer systems—it allows one to achieve a high level of ordering (as measured with 〈σ〉) with

larger confining hexagons. We suspect that a further shift and perhaps widening of the commensurability

windows can be achieved by some subtle tuning of the hompolymer length α and segment fraction ϕh.

3.4 “Control” Case: 37 Enclosed Microdomains

In an attempt to test the validity of our observations and conclusions for other small-scale confinement

sizes, we ran a parallel set of simulations, using exactly the same system parameters, except with a smaller

hexagon size. The hexagon size was selected in order to yield seven rows of microdomains across the hexagon,

or equivalently four microdomains along an edge. There are exactly 37 microdomains contained in such a

confining hexagon. In order to conserve computer time, the simulations were carried out on a slightly smaller

simulation space with Lx = Ly = 36 and nx = ny = 144. Otherwise, all system and simulation parameters

were exactly the same as given above.

In qualitative terms, our observations appear to carry over to the case of 37 enclosed microdomains. We
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can see from Fig. 9 that the relative positions and sizes of the commensurability windows, and the relative

change in positions and sizes for the smaller confining hexagons agrees well with the observations reported

in Secs. 3.1, 3.2, and 3.3.

For this smaller system, we also ran a series of 100 quenched simulations (using 100 different random

initial conditions) for an A-attractive wall and a confining hexagon with L = 13.00 in the center of the

commensurability window. Again, all other system and simulation parameters were the same as outlined

above. The observed values of the standard deviation of nearest neighbor separations σ for the 100 different

initial conditions were identical and perfect ordering was achieved in each realization. This gives strong

evidence that the observed order inside of the confining hexagon is highly reproducible.

4 Conclusion

We have examined the effects of small-scale, hexagonal, lateral confinement on ordering and defect formation

in SCFT simulations of cylinder-forming block copolymer thin films. The confining well was modeled as a

fixed density field that interacts with the segments via the melt incompressibility constraint and a Flory-type

interaction term.

For a quench to χN = 17, a majority-block-attractive wall (in our case the A-attractive) had a larger effect

on the ordering of the resulting microdomains than a neutral or minority-block-attractive wall. Specifically,

for an A-attractive wall, the width of the commensurability window was 2.5 times larger than for the B-

attractive wall and five times larger than for the neutral wall. This difference can be explained by examining

the effects of surface-induced microphase separation phenomena near the MST and the spinodal.

Controlled temperature annealing from below (χN)MST to a final value of χN = 17 appears to equalize the

effects of A-attractive, neutral, and B-attractive walls on ordering. This can be explained by the formation

of significant composition oscillations that form below (χN)MST and, in turn, encourage improved ordering

of the microphase once the bulk MST is crossed.

An A homopolymer (majority block) additive was examined as a means to increase the width of the

commensurability windows. While no appreciable change in commensurability window width was observed

for the 20 % A homopolymer employed in our study, the added A homopolymer shifted the commensurability

windows to larger values of L.

We have demonstrated that for hexagonal, laterally confined block copolymer thin films the preferential

segment–wall interactions, hexagon side length, χN annealing rate, and polymer architecture and formulation
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Figure 9: Graphs of 〈σ〉 vs. L for various AB and AB + A systems with 37 enclosed microdomains (instead
of the 61 enclosed microdomains reported in Secs. 3.1, 3.2, and 3.3). The first column [(a)-(c)] corresponds to
the case presented in Secs. 3.1 and Fig. 1 for an AB melt quenched to χN = 17 with (a) an A-attractive wall,
(b) a neutral wall, and (c) a B-attractive wall. The second column [(d)-(f)] corresponds to the case presented
in Secs. 3.2 and Fig. 6 for an AB melt annealed from χN = 12 to χN = 17 with (a) an A-attractive wall,
(b) a neutral wall, and (c) a B-attractive wall. The third column [(g)-(i)] corresponds to the case presented
in Secs. 3.3 and Fig. 7 for an AB + A blend annealed from χN = 12 to χN = 17 with (a) an A-attractive
wall, (b) a neutral wall, and (c) a B-attractive wall.
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all have an appreciable effect on the order of the enclosed microdomains. Moreover, we have shown that

SCFT simulations can be fruitfully used to elucidate the role of each of these factors on the achievement of

defect-free microdomain arrays.

The findings presented here could have technological relevance. In order to avoid the inherent difficulties

of realizing large “single-crystal” arrays of BCP microdomains, one could instead pattern a surface with a

grid of small hexagonal wells by using conventional top-down lithography. By filling the wells with block

copolymer, and relying on bottom-up self-assembly, it should be possible to achieve a high degree of registry

and uniformity of microdomains over macroscopically large areas. Inside of each hexagonal well would be a

small-scale, well-ordered, uniform microdomain array such as the arrays presented in this paper.
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