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We investigate instabilities of smectic A liquid crystals when a magnetic field is applied in the
direction parallel to smectic layers. We use the Landau-de Gennes model of smectic A liquid crystals
to characterize the critical magnetic field. When smectic A liquid crystals are confined between
parallel plates, we derive analytic estimates for the magnetic field strength, at which the undeformed
state loses its stability. We also present numerical simulations to confirm the Helfrich-Hurault effect
due to the applied magnetic field.
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1. INTRODUCTION

We consider smectic A liquid crystals confined in two flat
plates and uniformly aligned in a way that the smectic
layers are parallel to the bounding plates. If a magnetic
field is applied in a direction parallel to the smectic layers,
the instability occurs above the threshold magnetic field.
When the magnetic field reaches the critical threshold,
one can see periodic perturbation of the layers. This phe-
nomenon is called the Helfrich-Hurault effect. (See Refs.
[8] and [9].) We present the analytical estimate of the criti-
cal field and perform numerical simulations describing this
effect by using the Landau-de Gennes model.

Liquid crystal phases form when a material has a
degree of positional or orientational ordering yet stays
in a liquid state. In the nematic state, molecules tend to
align themselves along a preferred direction with no posi-
tional order of the centers of mass. The unit vector field
n, nematic director, represents the average direction of
molecular alignment. Moreover, if the liquid crystal is chi-
ral, n follows a helical pattern, with temperature-dependent
pitch. Upon lowering the temperature, or increasing
concentration, according to whether the liquid crystal is
thermotropic or lyotropic, the nematic liquid crystal expe-
riences a transition to the smectic A phase with molecules
arranged along equally spaced layers. The molecules tend
to align themselves along the direction perpendicular to
the layers.

The Helfrich-Hurault effect in a lamellar system can
be caused by magnetic/electric field or by mechanical
tension.4 In this paper, we study the magnetic field driven
instabilities in smectic A liquid crystals. Helfrich and

∗Author to whom correspondence should be addressed.

Hurault proposed the model that can explain the periodic
perturbations in cholesteric liquid crystals under a mag-
netic field or an electric field applied parallel to the helical
axis.8�9 They assumed that the layers are fixed at the cell
boundaries, i.e., the undulations vanish at the boundaries.
Still with this assumption, Stewart extended the classic
Helfrich-Hurault theory to three dimensional finite sam-
ples of smectic A liquid crystals in Ref. [13]. However, he
made an ansatz to simplify the problem.

Experimental studies of undulations of two dimensional
and three dimensional systems were performed in Refs.
[10] and [12], respectively. They used cholesteric liquid
crystals with a pitch 5 �m and 50–70 �m cell thickness
for the optical study. Since the layer thickness of smectic
A liquid crystals is in the nanometer range (nm), it is too
small to visualize the layer distortions. Their experiments
show that there are layer undulations on the boundary of
the sample. Motivated by the experimental result, Lavren-
tovich et al. proposed the model with weak anchoring con-
dition so that the undulations are allowed to appear on the
boundaries. By making an ansatz of periodic undulations,
they show that their model explains the experiment better
than the classic Helfrich-Hurault theory.

In Section 2, we present the model and the geometry
for our problem and state the existence result of mini-
mizers of the free energy. The models used in previous
works are based on an assumption that the director and
the layer normal vector are identical, either in an infinite
sample,4�8�9 or in a finite sample.13 We refine the theory
to allow the director and the layer normal to differ by
studying the Landau-de Gennes energy of smectic A liq-
uid crystals. In Ref. [3], motivated from the analogy to the
Ginzburg Landau model for superconductivy, de Gennes
introduced the complex function to describe layer struc-
tures of smectic liquid crystals. This model was used in
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Ref. [1] to rigorously analyze the phase transition between
the chiral nematic and smectic A liquid crystals. Recently,
Lin and Pan used this model to show that critical magnetic
field is achieved in an arbitrary domain.11 However, they
did not obtain the estimate of the critical magnetic field.

In Section 3, we find the analytical estimate of the crit-
ical magnetic field for layer undulations. The theory of all
previous works makes a choice of sinusoidal perturbation
for the undulation in order to derive the critical magnetic
field. Without this assumption, we derive the estimate of
the threshold in terms of the cell thickness. More precisely,
we prove that there exist universal constants 0 < c1 < c2,
such that, if 2d is the cell thickness, then the critical field
Hc satisfies

(
c1K

�ad


)1/2

≤Hc ≤
(
c2K

�ad


)1/2

(1)

where K��a�
 are material constants, which will be dis-
cussed in Section 2. This estimate is consistent with the
result found in the classic Helfrich-Hurault theory (see
p. 363 of Refs. [4] and [9]). We should mention that the
scaling of the critical field in this case is different from
the threshold for Fredericks transition of nematic liquid
crystals, where the critical field is proportional to 1/d�16

In Section 4, We perform numerical simulations to the
gradient flow equations. We find undulation instabilities
above the critical magnetic field.

2. THE MODEL

The total free energy density of smectic A liquid crystals
consists of the nematic fn and smectic fs part. The Oseen-
Frank energy density for a nematic is given by

fn = K1�� ·n�2 +K2�n ·� ×n�2 +K3�n× �� ×n��2
+ �K2 +K4��tr��n�

2 − �� ·n�2�
where K1�K2 and K3 are the splay, twist, and bend elas-
tic constants, respectively. The last term in fn is a null-
Lagrangian since its integral only depends on the boundary
values of n. We consider the energy with the one constant
approximation case, K1 =K2 =K3 =K/2> 0 and K4 = 0.
Then the nematic energy density becomes

K

2
��n�2

In order to associate smectic and nematic structure with a
state �n��� we write

��x�= ��x�ei��x�

Then the molecular mass density is defined by

��x� = �0�x�+
1
2
���x�+� ∗�x��

= �0�x�+��x� cos��x�

where �0 is a locally uniform mass density, ��x� is the
mass density of the smectic layers, and � parametrizes
the layers, so that �� is in the direction normal to the
layer. Finally, q is the wave number and 2�/q is the layer
thickness.

The Landau-de Gennes energy density for smectic A is
given by

fs =
C

2
��� − iqn� �2 + r �� �2 + g

2
�� �4

where C and g are positive material constants, and r may
be positive or negative. In Ref. [1], the energy density
fn+ fs was used to study the phase transition and stability
of the equilibrium states. Since we investigate the smectic
structure far from the nematic–smectic transition, we may
assume that the magnitude of the smectic order parameter
is constant, i.e., � is constant. Then fs becomes

fs =
Cq2�2

2
���−n�2

This energy density vanishes when �� = n, which
describes the configuration of smectic A liquid crystals.

The magnetic free energy density is given by
Refs. (4, 14)

fm =−�a
2
�n ·H�2 =−�a

2
!2�n ·h�2 (2)

where �a is the magnetic anisotropy, H = !h� and
! = �H�. We assume that �a > 0. Therefore, the energy (2)
favors molecular orientations where the director is parallel
to the applied magnetic field.

Collecting all contributions to the free energy, the free
energy density for the one-constant approximation model
becomes

f = K

2
��n�2 + B

2
���−n�2 − �a

2
!2�h ·n�2 (3)

where B = Cq2�2 is called the de Gennes compressibility
constant.

In this paper, we consider a two dimensional domain

#= $−L�L&× $−d�d&
We also assume that h = �1�0� so that the magnetic field
tends to make the director orient along the x direction. We
impose the periodic boundary condition for ( and n in
the x direction so that we can minimize the unnecessary
boundary effect, while we assume the strong anchoring
condition for n on the boundary plates, i.e., simply

n�x�±d�= �0�1� for all x ∈ $−L�L& (4)

However, we do not impose any boundary conditions on (.
We make the problem dimensionless by introducing new

variables

x̄ = x



� ȳ = y



� and � = 
(
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where 
 = √
K/B is of the order of the smectic layer

thickness. Then the free energy (3) becomes

B

2

∫
#̄
���n�2 + ��(−n�2 −*�n ·h�2�dx̄ (5)

where the dimensionless parameters are given by

*= �a!
2

B
� #̄= $−L̄� L̄&× $−h�h&� h= d



� L̄= L




Since h is the ratio of the cell thickness to the layer
thickness, we may assume that h 1. In fact, the values
d = 1 mm and 
 = 20 Å are employed in Ref. [4]. Then
h= 5×105. In this paper, we will consider h≥ 1.

From �n� = 1, we can introduce the scalar variable ,,
with 0 ≤ , < 2�, such that

n = �sin ,� cos,��

Then the free energy (5) becomes, dropping the bar
notation,

��,�(� =
∫
#
�(x− sin ,�2 + �(y− cos,�2

+��,�2 −* sin2 ,�dy dx (6)

and the corresponding boundary condition on , is the
homogeneous Dirichlet boundary condition on the top and
the bottom of the plate. This energy (6) has a trivial crit-
ical point, , = 0�( = y, which describes the undeformed
state where the layers are parallel to the boundary plates
and the directors are aligned in the y direction. The second
variation of the energy at the undeformed state, (0 = y,
and ,0 = 0, gives

1
2
D2��,0 + t,�(0 + t(� .=

1
2
d2

dt2

∣∣∣
t=0

��,0 + t,�(0 + t(�

=
∫
#
��(x−,�2 +(2

y

+��,�2 −*�,�2�dx dy (7)

The undeformed state, �,0�(0�, is stable if the second vari-
ation is nonnegative at �,0�(0�. Setting

��,�(� .=
∫
#
��(x−,�2 +(2

y+��,�2�dx dy (8)

the critical field *c is defined by

*c = inf
�,�(�∈�

��,�(� (9)

Here, the admissible set � is given by

�= /�,�(� ∈W 1�2�#�×W 1�2�#�. �,�L2�#� = 1

,�x�±h�= 0 for all x

, and ( periodic in the x direction1

Thus, the undeformed state, �,0�(0�, is stable if * ≤ *c
and unstable if * > *c. In Section 3 of Ref. [11], they
proved that the critical field *c is achieved when Dirich-
let boundary condition is imposed on 2#. Following their
work, we consider ( as a function of , and apply the
standard calculus of variations to prove the existence of a
minimizer of �. For the reader’s convenience, we present
a short proof here.

Proposition 2.1. There exists a minimizer for � in �.

Proof: If �,�(� is a minimizer, then ( can be expressed
in terms of ,. That is, we write

*c = inf/��,�(,�. , ∈W 1�2�#�

�,�L2�#� = 1� ,�x�±h�= 0 for all x

,�−L�y�= ,�L� y� for all y1

where (, is the solution of

3(, =
2,

2x
�

∫
#
(, = 0

2(,
2y
�x�±h�= 0 for all x�

(�−L�y�= (�L�y� for all y

(10)

Now we take a minimizing sequence /,j1 for � and write
(,j = (j . Since ,j is bounded in W 1�2�#�, it follows, for
a subsequence, still labeled ,j that

,j ⇀,� in W 1�2�#�� ,j → ,� almost everywhere in #�

For the L2 convergence on the boundary, we used the esti-
mate, from the proof of Theorem 1.5.1.10 in Ref. [7],

∫
2#

�u�2 d! ≤ C�#�/�u�L2�#���u�L2�#�+�u�2
L2�#�1

valid for all u ∈W 1�2�#�. We also have

∫
#

(
2(j

2x
−,j

)2

+
∫
#

(
2(j

2y

)2

≤ C

for some constant C. Then together with
∫
#
(j = 0, we

have �(j�W 1�2�#� ≤ C. The elliptic estimates on (10) with
, = ,j gives �(j�W 2�2�#� ≤ C and thus it follows, for a
subsequence, still labeled (j that

(j ⇀ (� in W 2�2�#�� (j → (� in W 1�2�#�

and (� satisfies (10) with , = ,�, i.e., (� = (,� . Thus
�,��(�� ∈ � and

��,��(,�� ≤ lim inf
j→�

��,j�(,j � = inf
,∈�

��,�(,� �
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3. CHARACTERIZATION OF THE
CRITICAL FIELD

In this section, we prove that the critical field in (9) satis-
fies *c ∼ 1/h. In other words, we prove

Theorem 3.1. Assume that L ≥ h ≥ 1. Then, there exist
universal constants c1 and c2 such that

c1

h
≤ *c ≤

c2

h

Note that this statement is equivalent to (1), where the
estimate is expressed in terms of the real parameters.

We prove this theorem in two steps: In the first step,
we prove a lower bound for the energy with the above-
mentioned scaling. In the second step, we prove a matching
upper bound.

The periodic boundary conditions allow us to use the
Fourier series representation.

,�x�y�=
�∑

n=−�
,n�y�e

i�nx and (�x�y�=
�∑

n=−�
(n�y�e

i�nx

where �n=2�n/L. Then (8) becomes

��,�(�=2L
∫ h
−h

( �∑
n=−�

��,′n�2+�2
n�,n�2

+�,n−i�n(n�2+�(′
n�2�

)
dy (11)

We define

*��� = inf
�,�(�∈�

∫ h
−h
��,′�2+�2�,�2+�,−i�(�2+�(′�2�dy

.= inf
�,�(�∈�

� �,�(��� (12)

where

� =
{
�,�(�∈W 1�2

0 �−h�h�

×W 1�2�−h�h�.
∫ h
−h
�,�y��2dy=1

}

As in Ref. [2], it follows that

��,�(� ≥ 2L
�∑

n=−�
*��n�

∫ h
−h
�,n�y��2dy

≥ 2L
�∑

n=−�
*c

∫ h
−h
�,n�y��2dy

= *c
∫
#
�,�2dxdy

for all ,∈W 1�2�#�. Immediately we see that

*c= inf
�
*��� (13)

3.1. Lower Bound

In following lemma we prove that there exists a constant
c1 such that *���≥c1/h for any �. This implies *c≥c1/h
due to (13). As a result, the undeformed state is stable if
*≤c1/h.

Lemma 3.2. Let h>1 and � be given positive constants.
Then there exists a universal positive constant c1 such that

∫ h
−h
��,−i�(�2+�2�,�2+�,′�2+�(′�2�dy

≥ c1

h

∫ h
−h
�,�2dy (14)

for all �,�(�∈�.

Proof: We may assume that � �=0, otherwise the
inequality (14) is trivial with c1=1. By using

ỹ= y
h
� and �= i�(

the claim (14) is equivalent to

∫ 1

−1

(
1
h
�,′�2+ 1

h�2
��′�2+h�2�,�2+h�,−��2

)
dy

≥c1

∫ 1

−1
�,�2dy (15)

The Euler-Lagrange equation for � is

− 1
h2�2

�
′′ +�=,

�′�±1�=0 (16)

We will prove the inequality (15) for all , and � satisfying
(16). We suppose that this inequality is false, i.e., there
exists /Cn1 with limn→�Cn= 0, for which we can find hn,
�n, �n∈� 1�−1�1� satisfying (16) and ,n∈� 1

0 �−1�1� with
�,n�2 = 1 for each n=1�2���� such that

∫ 1

−1

(
1
hn

�,′n�2+
1
hn�

2
n

��′
n�2+hn�2

n�,n�2+hn�,n−�n�2
)
dy

≤Cn (17)

Then we have two small parameters,

hn�
2
n≤Cn and 1/hn≤Cn (18)

where the second inequality follows from the Poincaré
inequality. We integrate the Eq. (16) to obtain

�̄n= ,̄n (19)

where �̄n and ,̄n are averages of �n and ,n, respectively. In
the following proof, we denote by C a universal positive
constant which may differ from line to line. Also, by Cn

4 J. Comput. Theor. Nanosci. 7, 1–7, 2010
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we denote C ·Cn. From the second and the last terms in
(17) and the Poincaré inequality, we have

Cn
hn

≥
∫ 1

−1
�,n−�n�2=

∫ 1

−1
�,n− ,̄n−��n−�̄n��2dy

≥ 1
2

∫ 1

−1
�,n− ,̄n�2dy−

∫ 1

−1
��n−�̄n�2dy

≥ 1
2

∫ 1

−1
�,n− ,̄n�2dy−C

∫ 1

−1
��′

n�
2dy

≥ 1
2

∫ 1

−1
�,n− ,̄n�2dy−hn�2

nCn (20)

Thus, we have

∫ 1

−1
�,n− ,̄n�2dy≤Cn

(
1
hn

+hn�2
n

)
(21)

Using (21), together with (20), we obtain

∫ 1

−1
��n−�̄n�2dy≤Cn

(
1
hn

+hn�2
n

)
(22)

Since �,n�L2 =1, we have

∫ 1

−1
�,n− ,̄n�2dy=1−2,̄n

2

Together with (21), we see that ,̄n
2→1/2 as n→�. By

taking a subsequence, still labeled with n, we may assume
,̄n→1/

√
2 as n→�. Therefore, from (18), (19), and (22),

we have

�7n�2
W 1�2 ≤Cn

(
1
hn

+hn�2
n

)
≤C2

n (23)

where 7n=�n−1/
√

2. This implies

sup
$−1�1&

�7n�≤Cn (24)

Setting fn=,n−7n and 8n=1/hn≤Cn, we rewrite the first
and the last terms of (17) as

1
8n

∫ 1

−1

(
fn−

1√
2

)2

dy+8n
∫ 1

−1
�f ′
n+7′

n�
2dy≤Cn (25)

where 7n satisfies the estimate (23). The part on the
left hand side is an Allen-Cahn functional with a single
well potential. From the first integral in (25), one can
see that for each n, there exists an∈�−1�1� such that
1/2< �fn�an��<1. Finally we get, from (25),

Cn ≥
∫ 1

−1

∣∣∣fn− 1√
2

∣∣∣�f ′
n+7′

n�dy

≥
∫ 1

−1

∣∣∣fn− 1√
2

∣∣∣�f ′
n�dy−

∫ 1

−1

∣∣∣fn− 1√
2

∣∣∣�7′
n�dy

≥
∣∣∣
∫ an
−1

(
fn−

1√
2

)
f ′
ndy

∣∣∣−
∥∥∥fn− 1√

2

∥∥∥
L2
�7′

n�L2

where we used the triangle inequality and Hölder’s
inequality. Doing the change of variables r=fn�y�, it fol-
lows from (23) and (25) that

∣∣∣
∫ fn�an�
−7n�−1�

(
r− 1√

2

)
dr

∣∣∣−Cn√Cn8n≤Cn (26)

This is a contradiction, since 1/2< �fn�an��<1 and
�7n�−1��≤Cn, which follows from (24). In fact, comput-
ing the integral in (26) we obtain

Cn�1+
√
Cn8n�

≥��fn�an�+7n�−1���fn�an�+7n�−1�−√
2��

≥
(

1
2
−Cn

)
�
√

2−1−Cn�

which is impossible since Cn→0. �

3.2. Upper Bound

We find an upper bound for the critical field by evaluating
(3) for an appropriate test function. Specifically, we prove
that *≤c2/h for some c2>0. This implies that if *>c2/h,
the undeformed state, �,0≡0�(0=y�, is no longer stable.
It follows from (13) that it suffices to find an upper bound
for the one-dimensional problem. That is the content of
the following lemma.

Lemma 3.3. Let L≥h≥1. There exists a constant c2 such
that

� �,̃�(̃��̃�≤ c2

h

∫ h
−h
�,̃�2dy (27)

for some �,̃�(̃�∈� and for some constant �̃.

Proof: Define ,̃, (̃ and �̃ by

�̃= 2�
L
n0≡

2�
L

[
L√
h

]

,̃=cos
�

2h
y

(̃=− i
�

cos
�

2h
y

where $·& denotes the greatest integer function. Since L≥
h≥1, we may see that n0≥1 and then

n2
0≤
L2

h
≤�n0+1�2≤4n2

0�

A simple computation shows that

� �,̃�(̃��̃�≤ 1
h

(
4�2+ 1

4
+�

2

4h

)∫ h
−h
�,̃�y��2dy

The lemma is proved with c2=4�2+1/4+�2/4. �

Theorem 3.1 is a consequence of the two Lemmas 3.2
and 3.3.

J. Comput. Theor. Nanosci. 7, 1–7, 2010 5
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Fig. 1. Contour plots of (, the solution of the system (28).

4. NUMERICAL SIMULATIONS

We have carried out two-dimensional simulations with
model (3) to study the Helfrich-Hurault effect. The energy
is minimized by solving the gradient flow:

2(

2t
=3(−� ·n

2n
2t

=9n�3n+�(−n+*�n ·h�h�
(28)

where 9n�f �=f −�n�f �n is the projection onto the plane
orthogonal to n, and �n�f � denotes the usual L2 inner
product. This projection appears as a result of the con-
straint �n�=1. For numerical purposes, it is more conve-
nient to write this term as

2n
2t

=−n×�n×�3n+�(−n+*�n ·h�h�� (29)

Written in this way, the equation resembles the Landau-
Lifshitz equation of micromagnetics in the high damping
limit,5 and the heat-flow of harmonic maps.15

For the initial condition, we take a small perturba-
tion from the undeformed state. More precisely, for all
�x�y�∈ #,

n�x�y�0�= �:u1�1+:u2�

��:u1�1+:u2��
(�x�y�0�=y+:(0

where a small number :=0�001 and u1�u2� and (0 are
arbitrarily chosen. As described in Section 2, we impose
strong anchoring condition for the director field, (4), and
natural boundary condition on ( at the top and the bottom
plates,

2(

2;

∣∣∣∣
y=±h

=n ·;�y=±h

Periodic boundary conditions are imposed for both n and
( on each side of the domain.

We use a Fourier spectral discretization in the x direc-
tion, and second order finite differences in the y direction.
The fast Fourier transform is computed using the FFTW
libraries 6. We use the fourth order Runge-Kutta method
to solve the corresponding initial value problem.

6 J. Comput. Theor. Nanosci. 7, 1–7, 2010
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We take the domain size L=100 and h=25. A more
physically relevant value for h in smectic A liquid crys-
tals is 5×105. However, the layer undulations can be
observed if h1. In fact, the undulations in cholesteric
liquid crystals occur with h≈10 Ref. [12]. The numbers
of grid points in the x and y directions are 256 and 128,
respectively.

In Figure 1 we show the layer structures in response to
the various magnetic field strengths *. The pictures are con-
tour maps of ( since the level sets of ( represent the layer.
One can see that the undeformed state is stable before the
magnetic field * reaches the threshold *c. If * increases
and reaches *c, the layer undulations occur. As * increases
beyond *c, the displacement amplitude increases as in the
Figure 1. The maximum undulation occurs in the middle of
the cell (y=0) and the displacement amplitude decreases as
approaching the boundary (y=±h). In the classic Helfrich-
Hurault theory, the layers are fixed at the boundary, i.e., no
undulations at y=±h. However, Figure 1 indicates that the
undulations may not vanish at the boundary even though
we impose the strong anchoring condition.
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