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In current FFT-based algorithms for micromagnetics simulations the boundary is typ-

ically replaced by a staircase approximation along the grid lines, either eliminating the

incomplete cells or replacing them by complete cells. Sometimes the magnetizations at

the boundary cells are weighted by the volume of the sample in the corresponding cell.

We show that this leads to large errors in the computed exchange and stray fields. One
consequence of this is that the predicted switching mechanism depends sensitively on the
orientation of the numerical grid. We present a boundary-corrected algorithm to effi-
ciently and accurately handle the incomplete cells at the boundary. We show that this

boundary-corrected algorithm greatly improves the accuracy in micromagnetics simula-

tions. We demonstrate by using A. Arrott’s example of a hexagonal element that the

switching mechanism is predicted independently of the grid orientation.
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1. INTRODUCTION

Micromagnetic modeling of a ferromagnetic material has been an active area of
research in the past decade, and is receiving even more attention because of the
general interest in nano-scale physics [11]. Traditionally, interest in understanding
the detailed magnetic domains and switching mechanisms has come from the mag-
netic recording industry. More recently, the program in designing magnetic random
access memory (MRAM) devices has also given a significant push on the study of
nano-scale defect structures in submicron elements [19, 6].

The dynamics of the magnetization distribution in a ferromagnetic material is
described by the Landau-Lifshitz equation [12, 14]:
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where the vector v represents the unit outward normal on the boundary of the
ferromagnetic sample. In (1), [M| = M, is the saturation magnetization, and is
usually set to be a constant far from the Curie temperature; 7 is the gyromagnetic
ratio. The first term on the right hand side is the gyromagnetic term and the
second term is the damping term. « is the dimensionless damping coefficient. H is
the local field, computed from the Landau-Lifshitz free energy functional:
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In (3) and (4), A is the exchange constant, A|VM]|? /M2 is the exchange interaction
energy between the spins, ® (M/M,) is the energy due to material anisotropy, uo is
the permeability of vacuum, —2uoH -M is the energy due to the external field, V is
the volume occupied by the material, and finally the last term in (3) is the energy
due to the field induced by the magnetization distribution inside the material. This
induced field Hgy = —VU, or stray field, can be computed by solving the differential
equation

AU = V-M, inV,
AU = 0, outsideV

[U] = 0, acrossdV
ou
[5] = —M-v, acrossdV. (5)

Here we use [ ] to denote the jump of a quantity across the boundary of V, 0V'.
Equation (5) can be solved explicitly, and the solution is [21]

Ulx) = VNx+xM= RsVN(m—y)-M(y)dy

—VU(z) = -V o VN(z —y) - M(y) dy (6)
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where N(z) = —ﬁli—‘ is the Newtonian potential in R3.

The main purpose of this paper is to provide an accurate way of evaluating the
exchange and stray fields using FFT-based methods for more general geometries.
We achieve this by carefully evaluating the contributions from the non-rectangular
cells that appear near the boundary of the domain when a sample of arbitrary
shape is discretized using a uniform grid. As an illustration of our method, we will

investigate the sensitivity of the numerical results to grid orientation.

2. REVIEW OF NUMERICAL METHODS FOR MICROMAGNETICS
SIMULATIONS

The basic idea commonly used in micromagnetics simulations is to decompose
the domain into computational cells and approximate both the magnetization and
the stray field, on each cell, by a constant representing its average value. The
effective field is evaluated on each cell, and the magnetization is advanced in time
using an appropriate time stepping scheme. Explicit schemes, such as fourth order
Runge-Kutta, or predictor-corrector schemes, are most commonly used. Recently,
a new unconditionally stable numerical time stepping procedure was presented in
[25].

In broad terms, the numerical methods currently used for the simulation of the
Landau-Lifshitz equation can be divided into two categories, according to how the
nonlocal stray field is evaluated. The first class of methods solve approximately the
differential equation (5) using an appropriate discretization, such as finite differ-
ences or finite elements. The difficulty with this approach is the lack of an effective
boundary condition for U. The differential equation (5) is formulated in the en-
tire space, which has to be truncated in simulations. Often a boundary integral
equation is used to represent the correct boundary condition at 0V [13, 3, 24].

The second class of methods is based on using (6) to compute the stray field.
The convolution integral in (6) is replaced by some numerical quadrature, and
the summation is performed, often by using the Fast Fourier Transform (FFT)
[26, 10, 20, 4, 9]. As such, the underlying numerical grid should be uniform in order
to be able to use FFT. Such an approach is quite successful when the material has
a rectangular shape. Otherwise, as we demonstrate in this paper, it suffers from
serious inaccuracies when the boundary 0V cuts through numerical cells.

In order to compute the effective field, let us concentrate in the two dimensional
situation.

Assume that the computational domain (Q is a rectangle with sides aligned with
the coordinate axes which is subdivided into m X n rectangles €2;; and that both the
magnetization and the stray field are represented by piecewise constant functions.
Let M;; and H;; represent the value of the magnetization and the stray field inside
each rectangle of the subdivision. We will approximate the stray field H inside 2;;
by its mean value. Substituting M in (6) and averaging
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Here we used the notation |€2;;| = area(€2;;). We define the mutual demagnetizing
tensor for domains €2;; and €y, as

1
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After integration by parts:
1
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where the vectors v;; and vy; are the unit outward normals on the boundary of €2;;
and Qy; respectively. The tensor product of vectors u and v, denoted by u ® v, is
defined as the matrix with elements (u ® v);; = u;v;.

It is easy to see that if the grid is uniform, the value of the demagnetizing
tensor depends only on the differences ¢ — j and k — [, i.e., the tensor is translation
invariant. Therefore the sum in (7) is a discrete convolution and can be efficiently
computed by using the Fast Fourier Transform (FFT).

Computing the demagnetizing tensors is not a trivial task. Integrals in (9) are
singular and difficult to evaluate either analytically or numerically. For rectangular
cells, the analytic expression for the demagnetizing tensors have been obtained by
Aharoni [1]. Somewhat more involved analytic expressions for the mutual demag-
netizing tensors for arbitrary non-intersecting rectangular prisms aligned with the
coordinate planes are given in [17].

In many applications the material is a thin film, and in this situation the eval-
uation of the demagnetizing tensor can be simplified. Assume that the volume V
occupied by the material is Q x [—4,d], where Q is a domain in the zy-plane and
26 is the thickness of the film. If the thickness ¢ is small in comparison to the size
of Q, we can safely assume that the magnetization M is constant in the transversal
direction to the film, and depends only on the in-plane coordinates. Under these
assumptions, the effective stray field is given by

Ho(o) ==V [ VEso—3) - M@dy+ [ Wolo—)-Ma)dy-es (10
where M'(z) = (Mi(z), Ma(z)) = M, (z) - 1 + Ma(x) - e3 are the in-plane compo-

nents of the magnetization vector M(z) = (Mi(z), M2(x), M3(x)), and K5 : R? —
R and W; : R?2 — R are defined by the formulas (see [8], for example),
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where arcsinh(z) = In (z + V22 + 1) and
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respectively. Here we use the notation e; = (1,0,0),e2 = (0,1,0),e3 = (0,0,1).
Consequently, the mutual demagnetizing tensor for domains €2;; and (1 is given

by
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The integrals in (14) are one dimensional and have logarithmic singularities. Fur-
thermore, even if Q;; or {1; have sharp corners, or some parts of their boundaries
intersect or coincide, the gradient of the inner integral in (14)

Ks(x —y) - vij(y) doi; (y) (16)
8%

is infinite at only a finite number of points and the adaptive numerical integration
for the outer integral does not experience any difficulties. Finally, the computation
of (15) can be avoided by using the trace property of the demagnetizing tensors

D?fkl = 5ik51'l - Dzljlkl - Di2j2kl (17)

which derives from the fact that the Laplacian of the Newtonian potential is a Dirac
distribution.

2.1. Staircase approximation

In current micromagnetics simulations of ferromagnetic materials of non-rectan-
gular shape, it is customary to consider a rectangular computational domain that
contains the ferromagnetic sample. The magnetization is set equal to zero outside
the material and the rectangular domain is discretized using a uniform grid. This
results in the appearance of cells of non-rectangular shape near the boundary of
the material, as illustrated in Figure 1. It is a common practice to replace the
boundary of the sample by a staircase, as in Figure 2. This has a dramatic effect
on the accuracy of the results.

In order to illustrate this, we consider the example of a hexagonal permalloy
element, suggested by A. Arrott [2]. This is also a good example to check the sensi-
tivity of the numerically computed switching mechanism to grid orientation, since
it is not possible to align the element with the coordinate axes. The long axis of the
element is 1um, the width is 0.25um, and the thickness is 0.02um. The element was
embedded into the computational domain with dimensions 1um x 1um x 0.02um.
The initial magnetization was set to be parallel to the long axis, and then a gradually
increased external field was applied in the opposite direction in order to simulate
the reversal process. The external field was increased in increments of 2000 A/m
and was kept constant at each field step until the steady state was reached. The
Landau-Lifshitz equation was integrated using the standard 4th order Runge-Kutta
method. The damping parameter o was set equal to 0.1. The physical constants
were chosen to mimic permalloy ( M, = 8.0 x 10> A/m, K, = 5.0 x 102 J/m?,
A=13x10"1 J/m, v=1.76 x 10'* T—1s71).

In Figure 3 we present images at different stages during the reversal process
in the hexagonal sample, where the boundary has been approximated using the
staircase approximation. We used 200 grid points in each direction to produce these
results. In the first column we show the switching process for a sample at 0 degrees
with respect to the OX axis. In the second column the sample has been rotated by
45 degrees in order to mimic the effect of a rotation of the numerical grid. Proper
geometric scaling factors have been considered in order to make both simulations
equivalent. The sequence shows two completely different switching mechanisms. In



both situations we observe initially the end domains grow, and the center domain
shrinks. The results on the first column show that the switching occurs as a result of
a rotation of the magnetization in the center domain, which subsequently spreads
to the whole sample. The results on the second column, however, do not show
such a rotation. What we see is the formation of vortices on the boundary of the
sample. These vortices enter the sample and the orientation of the magnetization
is reversed. The sequence also shows that, at 0 degrees, after the rotation of the
magnetization in the interior of the sample has occurred, a series of vortices are
generated on the boundary, and these vortices enter the sample, accelerating the
reversal process.

Our experience and the experience of A. Arrott is that such spurious numerically
produced switching does not disappear when the number of grid points in each
direction is doubled.

This discrepancy in the switching mechanism is a result of the large errors
introduced in the exchange and stray fields near the boundary of the material as
a consequence of the staircase approximation. We present now corrections to the
exchange and stray field that improve the results considerably.

3. BOUNDARY-CORRECTED METHOD

3.1. Corrections in the Exchange Field

The formation of vortices on the domain walls at the boundary, as seen in Figure
3.(h), is an indication that the exchange field is not being computed accurately near
the boundary of the domain during the simulation. It is clear that the boundary
condition (2) cannot be satisfied accurately using a staircase approximation since
in such a case the numerical boundary of the material does not coincide with the
prescribed physical boundary. This is the main source of errors in the exchange
field.

One might argue that in reality the boundary of the sample is never accurately
known and may contain rough edges. Nevertheless, it is important, as the subject
matures, to be able to compute accurately the correct magnetization distribution
once the boundary of the sample is given.

In the simulations presented in Figure 3 the exchange field was approximated
using the standard five point formula for the laplacian

Mij1,; —2M;; + M,y n Mijy1 —2M;; + M,
Ax? Ay?

AM;; ~ (18)
where Az and Ay are the grid sizes in the OX and OY directions respectively.
To accurately evaluate the exchange field on the boundary cells, the value of M at
exterior cells must be modified in order to take into account the boundary condition
(2). Here we describe a general procedure to produce a second order accurate
approximation to the laplacian on the cells near the boundary, taking into account
the boundary condition (2).

To illustrate the procedure, we will consider first the one dimensional case.
Consider the situation described in Figure 4. The points zg, 1, and z2 are inside
the domain, and the vales fy, fi1, and fo are known. The point x3 is outside the
domain, and the value f3 is to be determined. We want to approximate the second
derivative of the function f(z) at x5, knowing that f'(z2 + aAz) = 0. We consider



the fourth order accurate interpolation polynomial
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We impose the boundary condition:
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Thus we obtain:
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We approximate the second derivative at z2 by:
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Approximation (22) is second order accurate. The details of the proof can be
obtained from the authors upon request. Note also that the coefficients in expression
(22) can be bounded independently of «, and therefore the stability of the time-
stepping scheme is not affected.

In the general case, we proceed in the same fashion. We think of the function M
as a smooth function defined on (2, and the value M;; as the value of M at the center
of the computational cell Q;;. Consider now a situation like the one depicted in
Figure 5. We want to evaluate the laplacian on the cell (i, j) to high order accuracy.
In order to do this, we define a fourth order accurate interpolation polynomial using
all the points labeled in the picture (except M; 8- and M, +1ita which are
not grid points). Note that in two dimensions we need ten nodes to define such a
polynomial:

p(x,y) =ag+ai(z—z;)+as(y—y;)+as(x—z;)(z—zi—1) +as(y —y;) (Y —yj—1)
+a5(z — i) (y —y;) +as(z — ;) (2 — zi—1) (T — Ti—2) +ar(z — ;) (z — zi-1)(y — yj)
+ag(z —2:) (Y —y) Yy —yj-1) +ao(y —y;)(y — yi—1)(y — yj—2) (23)

where the coefficients a;,as,...,ag are determined by using the interpolatory con-
ditions.
We impose the boundary conditions
Op 1
E(mi +BAzy; —5Ay) = 0
Op 1
L@ - S,y +ady) = 0 (24)

Let us denote by v® = (v&,v§) and VP = (Vf , 1/2/3 ) the unit outward normal at the

points (z; — Az, y; + aAy) and (z;+ BAz, y; — + Ay), respectively. Then equations



(24) become
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This is a 2 x 2 system of equation with two unknowns, M;; ; and M j;1, which
can be easily solved. The laplacian at (i, ) can be approximated by

Mij1,; —2M;; + My
Az?

AM; ; = Ap(zi,y;) =

+ M;j+1 —2M;; + M, ;1 (26)
Ay?

One can show that approximation (26) is second order accurate. The details can
be obtained from the authors upon request. To avoid stability problems, one can
use an external point that is two grid-points away from the boundary, instead of
just one grid point away. A similar technique has been used in the context of
Immerse Boundary problems [16, 15, 7]. The advantage of our approach is that it
is not necessary to perform a local change of variables around the boundary of the
domain.

In the case of the hexagon considered previously, this simplifies greatly. First,
observe that if a boundary of the sample coincides with a grid line, then we can still
use formula (18) without modifications. This follows from the following observation:
On a boundary like the one depicted in Figure 6 the assignment M; ;1 = M; ;
would give a second order accurate approximation to the laplacian at (¢, ). However
the torque M; ; x Ay M; ; at (¢, j) would not be affected if we simply set M; ;41 = 0,
since Mi,]‘ X Mi,]‘ =0.

On the boundaries that are not parallel to the coordinate axes we have a situ-
ation like the one depicted in Figure 7. In this case, we assign M;;1,; = M, j_1,
and Mi’j+1 = Mz’—l.j-

The results obtained with these corrections in the exchange field are presented
in Figure 8. As before, in the first column we show the results of the simulation
with the hexagon at 0 degrees with respect to the OX axis. In the second column
the hexagon has been rotated by 45 degrees. The main observation is that now
the first stage of the switching process, which corresponds with the rotation of the
magnetization in the center of the sample, is common to both simulations: The
spurious vortices seen in Figure 3.(h) have been eliminated. However, we observe
that after the interior rotation has occurred, a series of vortices appear on the
boundary, and proceed to the interior, much like in Figure 3.(e). The presence of
these vortices is due mainly to the errors in the stray field.

3.2. Corrections in the Stray Field

In order to correct the errors in the stray field that result from using the stair-
case approximation, the geometric shape of the boundary cells must be taken into
account, as illustrated in Figure 1.

The efficient and accurate evaluation of the stray field presents two additional
difficulties now. First, the evaluation of the demagnetization factors becomes more
complicated since we need to evaluate the interaction between cells of arbitrary



shape. Second, the standard FFT-based algorithm is no longer applicable, since
the demagnetizing tensors are no longer translation invariant.

We solve the first problem using a combination of analytic formulas and numeri-
cal integration for the demagnetizing tensors. For arbitrary non-intersecting bodies
we evaluate the integrals in (9) using adaptive numerical integration [22, 5, 23].
The problems arise if the two domains coincide or have an edge in common. While
the inner integral in (9)

Nz —y) - vi(y) dow(y) (27)
Qg

can be obtained accurately, the outer integral is much more difficult to handle by
most numerical integration programs, due to the large gradients of (27) near the
corners of ;. Special quadrature may be applied to accelerate the convergence [5].
For thin films we use formulas (13), (14), and (15), and adaptive Gaussian quadra-
ture. In our numerical experiments we have been able to compute all integrals to
double precision accuracy.

The loss of translation invariance due to the irregular cells near the boundary
is more difficult to deal with. Our strategy is to express the stray field as the sum
of two contributions: the field produced by distant cells, or far field, and the field
produced by the near neighbors, or near field. A similar method is presented in
[18].

Hij — Hg;}ear) + Hg;ar)‘ (28)

Each contribution is evaluated in a different way. The near field only involves
nearest neighbors, as illustrated in Figure 9:

Hz(;wm) == Z Dijri - My (29)
|k—i|<1,]j—1|<1

Hence it can be computed by direct summation in O(N) operations, where N is
the number of grid points.

The evaluation of the far field is somewhat more complicated. Instead of evalu-
ating it exactly, we approximate it: We substitute the boundary cells by rectangles,
just like in the staircase approximation described earlier. The value of the magne-
tization in these modified cells is rescaled in such a way that the net magnetization
remains unchanged. Since the main contribution to the far field from a distant cell
is due to the net magnetization in that cell, we expect this to be a good approx-
imation. The advantage of this procedure is that by using only rectangular cells,
the demagnetizing tensor becomes translation invariant, and the summation can be
performed using the FFT in O(N log, N) operations. Notice that this step is now
the main source of the error. The near field, however, is computed exactly.

The results of the boundary-corrected algorithm are shown in Figure 10. The
improvement in the results is clear. The interior rotation of the magnetization is
followed by the formation of a boundary layer, which disappears once the interior
domain walls are pushed to the boundary. This mechanism, captured in both simu-
lations, coincides with the switching mechanism commonly observed in rectangular
samples which display an S state configuration, described in Figure 11.

For comparison, we present in Figure 12 various hysteresis loops obtained with
and without corrections. The dimensions of the sample were 1um x 1um x 200A.
The hysteresis loop was calculated quasi statically. Starting from a value H, =0 T,



the applied field was decreased in steps of 0.002 T when equilibrium was reached.
Two criteria were used to determine that a steady state had been reached: either
the simulation had run for 10 nanoseconds, or the relative change in the average
magnetization after 10 steps was less than 107%. We performed simulations at 0
degrees and at 45 degrees. The results at 45 degrees were computed with both
the staircase approximation and the boundary corrected algorithm. No corrections
were necessary for the sample at 0 degrees. The results for the boundary corrected
algorithm for a 200 x 200 grid coincided with the results obtained with the sample
at 0 degrees. Reducing the grid size produced the same hysteresis loop. The
boundary corrected algorithm with a 100 x 100 grid produced the same results
as the staircase approximation with a 200 x 200 grid, indicating the improvement
achieved by adding the boundary corrections.

4. CONCLUSION

We have shown that the staircase approximation leads to very large errors in
the computation of the exchange and stray fields. We have presented an efficient
boundary-corrected algorithm that handles directly and accurately the incomplete
cells at the boundary. Experiments with A. Arrott’s example of a hexagonal element
show that the boundary-corrected algorithm produces results that are insensitive
to grid orientation.
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FIG. 1 Irregular cells near the boundary of the sample when a uniform discretization is
used.

FIG. 2 Staircase approximation: The irregular cells near the boundary have been re-
placed by rectangles.
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FIG. 3 Reversal in a hexagonal sample using the staircase approximation in both the
exchange and the stray fields: (a)-(c) Enlargement of the end domains. (d) Interior
Rotation. (e) Generation of vortices at the boundary. (f)-(g) Enlargement of the end
domains. (h)-(j) Vortices appear on the boundary and enter the domain, causing the
reversal of the magnetization.
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FIG. 4 High order approximation of the second derivative in the one dimensional case.
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FIG. 5 Extended stencil near the boundary. Only the grid points used for the interpola-
tion polynomial are labeled. We include the cases @ = 0 and 8 = 0, in which case a grid
point is precisely on the boundary of the sample.
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FIG. 6 The boundary coincides with one of the gridlines.




FIG. 7 Boundary of the hexagon. Both a and 3 are zero. We do not need to increase
the stencil in this case.
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FIG. 8 Reversal in a hexagonal sample using the staircase approximation in the stray
field. The exchange field is computed to second order accuracy everywhere. (a)-(d) and
(f)-(i) show the growth of the end domains and the interior rotation of the magnetization.
(e) and (j) show the subsequent formation of vortices on the boundary.




FIG. 9 Near field and Far field at cell (%, j). For the Near field, only the white cells are
used. For the Far field, the black cells are used.
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FIG. 10 Reversal in a hexagonal sample using the boundary-corrected algorithm. Cor-
rections for the exchange and stray fields have been added. The results are insensitive to
grid orientation. (a)-(d) and (f)-(i) show the growth of the end domains and the interior
rotation of the magnetization. (e) and (j) show how the domain walls are pushed to the
boundary. No vortices are present.




FIG. 11 Sketch of the magnetization distribution for an S state configuration in a rect-
angular cell.
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FIG. 12 Hysteresis loops computed with and without corrections, at 0 and 45 degrees.



