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Abstract

The effect of thermal activation in planar Permalloy nanorectangles of thickness Lz ¼ 2:5 nm, width Ly ¼ 20nm and different in plane

aspect ratios (r ¼ Lx=Ly) has been analyzed assuming uniform magnetization in the sample at room temperature. The relaxation times

were computed by integrating the Langevin equation in presence of external fields that reduce the energy barrier separating the two

energy minima. From these data we obtain the pre-exponential factor in the Arrhenius formula for each aspect ratio. That allows us to

estimate the relaxation time in the absence of external field. A minimum aspect ratio of r ¼ 3:25 is required for a lifetime larger than 100

years, which is a commonly accepted stability criterion.

r 2005 Elsevier B.V. All rights reserved.

PACS: 75.40.Mg; 75.75.+1; 75.20.�g

Keywords: Thermal activation; Langevin dynamics; Relaxation time
1. Introduction

Amagnetic random access memory (MRAM) is an array
of magnetic tunnel junctions (MTJs), each one comprising
a soft magnetic element (free layer) and a hard element
(pinned layer) separated by a thin insulating layer [1]. On
each MTJ, the information is writen by passing electrical
currents through two orthogonal metallized tracks (word
and bit lines), which induce a magnetic field in the free
layer to reverse its magnetization. In the reading processes,
the state of the free layer can be determined by
magnetorresistance measurements of the MTJ: if both free
and pinned layers are magnetized in the same (opposite)
direction, the MTJ has low resistance (high resistance).

The shape and dimensions of the free layer are chosen in
order to achieve single domain bi-stable behavior. The two
equilibrium states of opposite magnetization are separated
by an energy barrier DE, which is due to shape and/or
magnetocristaline anisotropy. This double-well structure of
the energy is the archetype of the hysteretic behavior. In the
deterministic case (T ¼ 0K), the system can only jump
from one state to the other if an external field is applied.
front matter r 2005 Elsevier B.V. All rights reserved.

ysb.2005.10.068

ng author. Fax: +34 923 294584.

ss: a2577@usal.es (E. Martinez).
However, at finite temperature (Ta0K) the system can
escape from one state to the other by thermal activation
over the barrier DE even if the external field is null.
Superparamagnetism concerns the loss of magnetic stabi-
lity as a result of thermal fluctuations that occur when free
layers are made too small [2]. In order to achieve higher
density storage, the free layer dimensions must be reduced.
However, superparamagnetism becomes increasingly im-
portant as magnetic particles become small, and it is
thought to be the limiting factor for increasing storage
densities in magnetic data systems.
It is a requirement for data storage that thermally

activated hopping from one well to the other must be
improbable over very long periods of time. According to
the Arrhenius–Neel model, the relaxation time tR is given
by

1

tR
¼

dp

dt
¼

1

t0
exp �

DE

KBT

� �
, (1)

which describes the probability per unit time dp/dt, of
hopping from one well to the other over an energy barrier
DE. T is the temperature, KB is the Boltzmann constant,
and, t0 is a constant related to the gyromagnetic precession
period of the magnetic system.
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At low temperature and zero external field (Hext ¼ 0),
the energy barrier between the two states of opposite
magnetization is too much high to observe an escape
process by numeric simulations, where typical measures are
limited to a few microseconds. However, the energy barrier
can be reduced by applying a magnetic field (Hexta0) in
the opposite direction to that of the particle’s magnetiza-
tion. When the applied field is close enough to the
switching field at zero temperature (HSW), thermal
fluctuations are sufficiently strong to allow the system to
overcome the barrier, and therefore the magnetization is
reversed.

From Arrhenius–Neel model (1), the relaxation time tR
at a given temperature can be determined if the energy
barrier DE and the pre-exponential factor t0 are known. In
present work, we have measured the relaxation time tR
when an external field is applied to reduce the energy
barrier at room temperature by solving the Langevin
dynamics. From these values, an estimation of the pre-
exponential factor t0 can be obtained by fitting the numeric
results to the Arrhenius–Neel formula (1). Once t0 is
known for each sample, the relaxation time without
external field can be inferred in order to compare it with
the stability criterion of one hundred years.
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Fig. 1. Hysteresis loops for a prism of 80 nm� 20 nm� 2.5 nm (r ¼ 4).

hmHi ¼ cosðjM � jHÞ represents the magnetization along the external

field.
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Fig. 2. Averaged trajectory over 2000 stochastic realization of the

magnetization parallel to the easy axis. The specific sample

(40 nm� 20 nm� 2.5 nm, r ¼ 2) is initially magnetized along x40, and

the external field is 50mT at 1851 (around 4.5mT smaller than the

corresponding coercive field).
2. Model and numerical details

Let us consider each free layer in a MRAM to be
Permalloy (saturation magnetization Ms ¼ 8:6� 105 A=m,
Ku ¼ 0, and damping parameter a ¼ 0:02) prisms
Lx� 20 nm� 2.5 nm. We have analyzed samples with Lx

between 40 nm (r ¼ Lx=Ly ¼ 2) and 120 nm (r ¼ 6). Inter-
layer coupling from the pinned layer, and magnetocristal-
line anisotropy (K ¼ 0) are ignored.

Deterministic (T ¼ 0K) hysteresis loops have been
calculated assuming that the particle is uniformly magne-
tized by solving the Landau–Lifshitz–Gilbert equation for
each external field value. We considered that the equili-
brium state is reached if the torque between the magnetiza-
tion m and the effective field heff (external field and
magnetostatic field) is |m� heff|o10�6. Several in-plane
fields were evaluated forming different angles (jH) with
x40 axis. The hysteresis loops along the external field
directions are displayed in Fig. 1 for a sample with r ¼ 4.

From the simulations we observe that the out-of-plane
magnetization component (mz) is always negligible
(mzE10�5), and therefore a 2D model is justified. Within
this approximation the energy of the system can be written
as [3]

E ¼ Edmg þ Eext

¼ K shV sin2 jM � m0MsVHext cosðjM � jHÞ, ð2Þ

where V is the volume of the particle, Hext is the external
field, and jM and jH are the angles of magnetization and
external field measured from the easy axis of magnetization
(x-axis). In this case, the shape anisotropy constant Ksh is
given by

K sh ¼
1

2
m0M

2
s ðNy �NxÞ, (3)

where Nx y Ny are the demagnetizing factors [4]. The
energy (2) has two minima separated by an energy barrier.
The height of the barrier is related to the modulus of Ksh

which increases with the in-plane aspect ratio r ¼ Lx=Ly.
According to the Stoner–Wohlfarth model, the angular
dependence of the switching field H0

SW (defined as the field
at which the energy loses its biestable character,
qE=qjM ¼ q2E=qj2

M ¼ 0) is given by [3]

H0
SW ¼

2K sh

m0Ms
ðsin2=3 jH þ cos2=3 jHÞ

�3=2. (4)

The switching fields obtained from the simulations (Fig. 1)
agree with those obtained from Eqs. (4) and (3) with a relative
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error smaller than 10�2. This reinforces the assumption that
our samples behave like 2D Stoner–Wohlfarth particles.

3. Langevin dynamics: thermal effects

Thermal fluctuations are included in the numerical
calculations by adding a random thermal field Hth to the
deterministic effective field Heff in the Landau–Lifshitz–
Gilbert equation of motion applied to a single domain
particle [5],

ð1þ a2Þ
dm

dt
¼ � g0m� ðHeff þH thÞ

� ag0m� ½m� ðHeff þH thÞ�, ð5Þ

where m is the unitary vector describing the magnetization
orientation, g0 the gyromagnetic ratio, and a the damping
parameter. The thermal field Hth is assumed to be a
Gaussian distributed random vector with the following
statistical properties:

hH th;kðtÞi ¼ 0, (6)
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Fig. 3. Computed relaxation times as a function of DE=KBT at room tempera

correspond to results obtained after averaging over 2000 stochastic trajectories

case, the energy barrier was computed from Thiaville’s expression (9). Black l
hH th;kðtÞH th;lðt
0Þi ¼ 2Ddkldðt� t0Þ, (7)

where k and l refer to the Cartesian indexes (x,y,z), and D is
a constant determining the strength of the thermal field.
From fluctuation–dissipation theorem, or by checking that
the Maxwell–Boltzmann distribution is recovered when
thermodynamic equilibrium is reached, one obtains

D ¼
aKBT

m0Vg0Ms
, (8)

where V is the volume of the sample.

4. Estimation of the relaxation time

Starting from an initial state magnetized along the x40
axis, the fields Hext are applied in the xy plane at 1851 from
the x40-axis. The values of Hext are always smaller than
the coercive field HC but large enough to observe
relaxation in a numerically accessible time scale. The
Langevin Eq. (6) is integrated by means of a second-order
Heun scheme using a dimensionless time step of
Dt ¼ 0:52 ps. For each sample and field, 2000 stochastic
∆E (Hext)/KBT

∆E (Hext)/KBT

Hext)/KBT

0 6 10

-2

0

2

4

6

8

10

ln
 [�

R
 (

H
ex

t)]
ln

 [�
R
 (

H
ex

t)]

 r=Lx/Ly=3

Linear Fit

 r=Lx/Ly=5

0 2 4 6 8 10 12 14

8 10 12 14

16

-2

0

2

4

6

8

10

Linear Fit

Fit

�R (Hext)

�R (Hext)

t)

�0(r=3)=exp(A)=0.31ns

�0(r=5)=exp(A)=0.25ns

r=6)=exp(A)=0.30ns

2 4 8

b)

)

ture. (a) r ¼ 2, (b) r ¼ 3, (c) r ¼ 4, (d) r ¼ 5, and (e) r ¼ 6. White symbols

({mx}2000), and tR is defined as the time elapsed until fmxgðtRÞ ¼ 0. In each

ines correspond to linear fits.



ARTICLE IN PRESS

2

1x10-10

1x100

1x1010

1x1020

1x1030

100 years

r = Lx/Ly

� R
 (

H
ex

t=
0)

 (
ye

ar
s)

3 4 5 6

Fig. 4. Relaxation time in absence of external field depending on the

r ¼ Lx=Ly (Ly ¼ 20nm ¼ cte, Lz ¼ 2:5nm ¼ cte) at room temperature.
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realizations were computed, from which an averaged
trajectory of the magnetization along the easy axis
{mx(t)} was obtained. The range of evaluated fields is
1mTpm0ðHCHextÞp25mT for all r between 2 and 6. Fig. 2
shows a typical relaxation curve for the particular case of
r ¼ 2 when an external field of 50mT (m0ðHC �HextÞ �

4:5mT) is applied at 1851 from x40.
In this work, the relaxation time tRðHext;jH ;TÞ is

defined as the time elapsed until fmxgðtÞ ¼ 0. The obtained
values for the relaxation time tRðHext;jH ;TÞ are showed in
Fig. 3 for all fields and samples analyzed. The results are
presented as a function of DE/KBT for T ¼ 300K , using
Thiaville’s expression [6] for energy barrier,

DE ¼ 4K shV
2

3

� �3=2
j cos jHj

1=3

1þ j cos jHj
2=3

1�
Hext

H0
SW

 !3=2

. (9)

From Fig. 3 is clear that, except for the small values of
DE/KBT, the results (ln(tR)) gather round a straight line
approximately for all samples. Therefore, the Arrhenius–
Neel (1) can be used to provide the pre-exponential times t0
by linear fitting for each r ¼ Lx=Ly. The observed
discrepancies for smaller values DE/KBT are not surprising,
since the Arrhenius–Neel model (3) is only valid in the
high-energy barrier regime (DEbKBT).

Computed values of t0 vary from 0.34 ns for r ¼ 2, to
0.30 ns for r ¼ 6. From them, the relaxation time for
Hext ¼ 0 can be obtained using again the Arrhenius–Neel
model (1). Fig. 4 shows the variation of the relaxation time
in absence of external field depending on r ¼ Lx=Ly

(Ly ¼ 20 nm ¼ cte, Lz ¼ 2:5 nm ¼ cte) at room tempera-
ture.

From results of Fig. 4, the relaxation time tRðHext ¼ 0Þ
increases with r from tRðHext ¼ 0Þ ¼ 1:34 ns for r ¼ 2, to
tRðHext ¼ 0Þ ¼ 5:66� 1028 years for r ¼ 6. A minimum
Lx � 65 nm (for Ly ¼ 20 nm ¼ cte, Lz ¼ 2:5 nm ¼ cte) is
required in order to avoid superparamagnetism behavior
according with the tRðHext ¼ 0Þ4100 years criterion. In
this case, an information storage density around 130Gb/
in2 could be achieved if the separation from one memory
cell to its neighbors equals its size.
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