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My research interest lies in kinetic approaches for multiscale physical systems including appli-
cations in seismic wave propagation and inversion, spin-transfer torque in micro-magnetics, and
quantum tunneling in quantum chemistry and solid-state physics. The main tools that have been
used in my research are the (frozen) Gaussian approximation, the Wigner transform and parallel
computing. I will discuss these topics at a deeper depth in the following sections.

Frozen Gaussian Approximation for 3-D Seismic Tomography

Three-dimensional (3-D) wave-equation-based seismic tomography is computationally challeng-
ing in large scales and high-frequency regime. We present a systematic introduction on applying
frozen Gaussian approximation (FGA) to compute high-frequency sensitivity kernels for adjoint
tomography in 3-D earth models. FGA approximates seismic wavefield by a summation of frozen
(fixed-width) Gaussian wave-packets propagating along ray paths. One can use a relatively small
number of Gaussians to get accurate approximations of high-frequency wavefield. Meanwhile, FGA
algorithm can be perfectly parallelized, which speeds up the computation drastically with a high-
performance computing station. In order to apply FGA to the computation of 3-D high-frequency
seismic tomography, first, we reformulate the FGA so that one can efficiently compute the Green’s
functions whose convolutions with source time function produce wavefields needed for the con-
struction of 3-D kernels; and second, we incorporate the Snell’s law into the FGA formulation,
and asymptotically derive reflection, transmission and free surface conditions for FGA to compute
high-frequency seismic wave propagation in high contrast media. One paper in presenting these
results has been published in Geophys. J. Int. [11].

The scalar wave equation arising from seismic wave propagation takes the form of

∂2
t u− c2(x)∆u = sk(t)δ(x− xs), (1)

where c(x) is sound speed, sk is source time function to model an earthquake event, δ is the
Dirac delta function, and the wave number k � 1 indicates that we are considering seismic wave
propagation of high-frequency (corresponding to short wavelengths). The original FGA formulation
is used to approximate the initial value problem of (1) in the homogeneous case (sk ≡ 0) by the
following integral,

ukF(t,x) =
∑
±

∫∫
a±

(2π/k)9/2
eikP±·(x−Q±)− k

2
|x−Q±|2 dq dp, (2)

where we have used superscripts “+” and “−” to indicate two wave branches respectively, and the
Gaussian center Q±(t, q,p) and P±(t, q,p) and the amplitude a±(t) satisfy a system of uncoupled
ODEs [16]. In practice, we should consider an inhomogeneous problem with a non-vanishing source
time function. To achieve this we first get a finite frequency approximation Gk

F of the Green’s
function of (1) by solving (1) with initial conditions u(0,x) = 0 and ∂tu(0,x) = δ(x − xs) using
FGA, and then we convolve Gk

F with the source time function sk to get the approximation of the
wavefields.

Development of efficient and accurate methods is constantly necessary to improve the mod-
eling of seismic wave propagation in different situations, especially in complex media with high
contrast heterogeneity. When waves hit the interface where the wave speed c(x) is discontinuous,
proper interface conditions should be incorporated in the FGA formulation to capture reflected
and transmitted waves. To overcome this difficulty we impose the reflection and transmission
condition by applying the Snell’s law and get the leading order terms in asymptotic expansion
are = Rain, and ain = Tain, with the reflection coefficient R and transmission coefficient T given

by R = pinz −ptrz
pinz +ptrz

, and T = 2pinz
pinz +ptrz

, where we have used in, re, and tr to indicate the incident, re-

flected, and transmitted waves respectively, and pin/re/tr are velocities determined by Snell’s law.



The derivation of the interface condition relays on the Eulerian formulation of frozen Gaussian
approximation [16] and matching of the continuity conditions.

The embarrassingly parallel property, less limitation on the time steps in solving the uncoupled
ODEs, and the interface conditions make FGA an efficient method for the large domain and high-
frequency seismic wave simulation. We test the computational efficiency and accuracy of the FGA
in comparison with the spectral element (SPE) method which is widely used in geographic physics.
In Figure 1(a), we plot the one-step computational time with respect to different frequency number
f , from which one can observe that the computational time spent by FGA increases more or less
linearly in f , while that of the SPE increases like f3. In Figure 1(b), to achieve a comparable
accuracy as FGA, SPE needs 128 elements in each spatial direction, which requires an average
computational three times longer than that of FGA. We then apply FGA in the computation of the
seismic tomography [12]. As shown in Fig.2(a), we apply FGA to the computation of the sensitivity
kernels in 3D seismic inversion in a three-layered cross-well setup. We also apply FGA in the local
earthquake inversion using Landers source-receiver data, where the earthquake events are marked
by red dots and the receivers are marked by blue triangles in Fig.2(b-d). The true velocity model
is shown in Fig.2(d) and a full-waveform inversion result is shown in Fig.2(e).
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Analysis of Semiclassical Limit for Spin-Magnetization Coupling

The spin-magnetization coupling plays a key role in the active control of domain-wall motion and
magnetization reversal in magnetic multilayers, which are the core techniques used in magnetore-
sistance random access memories and race-track memories [4]. The Schrödinger-Poisson-Landau-
Lifshitz-Gilbert (SPLLG) system is used to describe a mechanism known as spin-transfer torque
that transfers the spin angular momentum to magnetization dynamics via spin-magnetization cou-
pling, and was introduced in the seminal works of Slonczweski [18] and Berger [2].

The main goal of this research is to use a quantum-kinetic description and semiclassical analysis
to set up a mathematical theory and foundation of spin polarized transport in ferromagnetic multi-
layers with strong orbit coupling from the most fundamental point of view, so that every important
detail of trimming the model can be carefully analyzed. A paper to report these results is going to
appear in Arch. Ration. Mech. Anal., and specifically, we proved the following two theorems [6]:
Theorem 1 (existence of weak solutions). Consider the SPLLG system

iε∂tψ
ε
j = −ε

2

2
∆ψε

j + V εψε
j −

ε

2
mε · σ̂ψε

j , for x ∈ R3, j ∈ N,

∂tm
ε = −mε ×Hε

eff + αmε × ∂tmε, for x ∈ Ω ⊂ R3,

(3)

where 0 < ε � 1 is the renormalized Planck constant in the semiclassical regime, ψε
j ∈ R2 stands

for the j-th spinor, mε ∈ R3 is the magnetization, the potential V ε = −N ∗ ρε is the Coulomb
interaction, and the effective field Hε

eff = ∆mε +Hs[m
ε] + ε

2s
ε, with Hs[m

ε] = −∇ (∇N ∗ ·mε)
being the self induced stray field, and N = 1/(4π|x|). Then there exists ψε

j ∈ L∞([0,∞), H1(R3))
and mε ∈ C([0,∞), H1(Ω)) ∩H1([0, T ] × Ω) for all T > 0, such that (ψε

j ,m
ε) is a weak solution

to the SPLLG system (3).
Theorem 2 (semiclassical limit). Under certain assumptions on the initial conditions, there
exists a sequence of solutions (ψε, mε) of the SPLLG system (3), and W ε as the Wigner trans-

form of {ψε
j}, such that W ε ε→0−−−→ W in L∞((0, T ), L2(R3

x × R3
v)) weak*, and mε ε→0−−−→ m in

L∞((0, T ), H1(Ω)) weak*, and (W,m) is a weak solution to the following VPLLG system,

∂tW = −v · ∇xW +∇xV · ∇vW +
i

2
[σ̂ ·m, W ],

∂tm = −m×Heff + αm× ∂tm,

where the potential V = −N ∗ ρ, the density ρ =
∫
R3
v
W dv, and the effective magnetic field

Heff = ∆m+Hs[m].
The coupling of the Schödinger system and the LLG system bring us more difficulties, which

include the non-wellposeness of regular solutions due to the nonlinear LLG system and the jump
discontinuity of the magnetization across the boundary of the domain Ω. The existence of the global
regular solution of the LLG system is still an open problem, and for this reason we consider the
weak solutions in H1 and prove the existence theorem. The jump discontinuity of the magnetization
make the limit of the Wigner equation non-trivial when we try to estimate the remainder. We apply
a mollifier in the intermediate step, successfully remove the discontinuity and obtain a uniform
estimate, and then prove the semiclassical limit.

Then in ε� 1 as the rescaled Knudsen number, we considered the s-wave form spin dynamics
coupled with LLG system in the diffusion regime ,

∂tW
ε +

1

ε
(v · ∇xW

ε(x,v)−∇xφ(x) · ∇vW
ε(x,v)) = i [σ̂ ·mε,W ε] +

1

ε2
Q(W ε) +Qsf(W

ε),

∂tm
ε = −γmε × (∆mε +Hs[m

ε] + sε) +mε × ∂tmε,
(4)
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with ε � 1 as the rescaled Knudsen number, the BGK collision operator Q, and the spin-flip
operator Qsf(W

ε) = I
2TrC2W ε−W ε. We studied the existence of solutions in a weighted L2 space,

and rigorously proved the diffusion limit of the coupled system given by

∂tρ−∇x · (D · (∇xρ+∇xφρ)) = 0,

∂ts−∇x · (D · (∇xs+∇xφs)) = −2m× s− s,
∂tm = −γm× (∆mε +Hs[m

ε] + s) +m× ∂tm.

(5)

The first term on the right hand side of (5) represents the precessional motion due to the sd
interaction when the magnetization directions of the spin and the local moments are not parallel;
the second term on the right hand side of (5) represents the spin-flip relaxation, which recover the
diffusion model introduced in by Zhang, Levy and Fert (Nobel Prize, 2007) in [21]

Semiclassical Models and Methods for Quantum Tunneling

My research works on inter-band tunneling studies the interaction between several coupled
potential energy bands, e.g. , for crystal lattice, the Bloch bands may getting close to each other or
even cross, in which cases particles may transit through the band gap to the other energy band. The
study of such “quantum tunneling” is important in many applications, from quantum dynamics in
chemical reaction [20], semiconductors to Bose-Einstein condensation [3]. In the first approach we
considered the quantum system in phase-space using Wigner transform, and take the off-diagonal
terms of the Wigner matrix into account to capture the tunneling. A paper presenting these results
has been published in SIAM Journal on Multiscale Model. Sim. [8]. In the second approach [9] we
studied the Schrödinger equation and propose a semiclassical-quantum hybrid numerical method.
In the following I will take the Schrödinger equation with a lattice potential as examples and
introduce these works in more detail.
A semiclassical model using Wigner-Bloch theory. We use the Wigner-Bloch theory to
derive semiclassical models for the Schrödinger equation with periodic potentials that account for
band-crossing [7]. Without band-crossing, the classical Vlasov limit can be obtained along each
Bloch band [1, 13, 17], which only includes the diagonal entries of the Wigner-Bloch matrix and
valid away from the crossing zone. In our semiclassical models we include the leading order of the
off-diagonal entries, resulting in a coupled system

∂tσ +A∂xσ − ∂xU∂pσ = ∂xUCσ +
iD

ε
σ. (6)

Here, σ = [σ11, σ12, σ21, σ22]T represents the Wigner-Bloch components, A, C, and D are 4 × 4
matrices determined by the band structure. In particular, the entries of C are the Berry connections,
and D = diag [0, E2−E1, E1−E2, 0] with Em being the m-th Bloch band, m = 1, 2. In this system
different bands are coupled together by C and inter-band transition happens. As ε goes to 0, the
off-diagonal entries σ12 and σ21 go to 0 weakly, and the system goes to the classical Vlasov system

∂tσmm + ∂pEm∂xσmm − ∂xU∂pσmm = 0. (7)

The semiclassical Vlasov system (6) is defined in phase-space and contains a small parameter ε, so
numerically solving it requires ∆t,∆x < ε. In order to numerically solve the problem efficiently,
we present a domain decomposition idea based on the asymptotic properties of the transition
coefficients σmn(m 6= n): In a

√
ε neighborhood of the crossing point, we solve the semiclassical

Vlasov system (6) using a fine mesh with ∆x and ∆t less than
√
ε, and out of the neighborhood

we solve the classical Vlasov system (7) using coarse mesh independent of ε.
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A Bloch decomposition based hybrid method. In order to reduce the computational complex-
ity, we develop a new Bloch decomposition-based Gaussian beam (BDGB) method in simulating
the periodic Schödinger equation in the momentum space away from the band-crossings. As an
asymptotic solver, the BDGB method does not have the requirement on the ε-dependent mesh size
and time step, and it reduces the original Schrödinger equation into a system of uncoupled ODEs,
thus it can drastically speed up the computation. Moreover, the BDGB method in momentum
space provides us a convenient way to combine it with the the Bloch decomposition-based time
splitting (BDTS) method [14, 15] in order to capture the inter-band tunneling: Away from the
crossing point, the use of the asymptotic Gaussian beam solution can reduce the computational
cost efficiently; around the crossing point, the direct simulation of the Schrödinger equation by
BDTS can capture the inter-band transitions, and one has to use fine spatial mesh and time steps
of O(ε) to get the desired accuracy, but since one can suitably choose the size of computational
region as O(

√
ε) around the crossing point, the numerical cost of this part can also be reduced; and

the exchange of data between different zones is achieved simply by Gaussian beam decomposition
[19].

In Figure 3 we show the resulted Bloch coefficients in simulating the Schrödinger equation
with a honeycomb lattice potential using the BDTS and BDGB hybrid method. The Schrödinger
equation with a honeycomb lattice potential can be used to model the electron motion in a Graphene
layer, and due to the existence of the Dirac point, inter-band transitions are very important in the
simulations. But since this problem is defined in two dimensional space, when ε is small, to solve
the Schrödinger equation using the BDTS method will be a huge challenge for the memory and
cpu time. With the help of the hybrid method, this example can be done in one hour on a personal
laptop. As it has been shown in Figure 3, the significant inter-band transition around the Dirac
point can be captured clearly using the hybrid method.

Ongoing and Future Research

Seismic tomography. Seismic tomography is one of the core methodologies for imaging the
structural heterogeneity of the Earth’s interior. Our studies pave the way to directly apply wave-
equation-based seismic tomography methods into real data around their dominant frequencies. We
are currently working on the FGA for elastic wave equations in order to get a more reliable model
in seismic tomography and apply it on real seismic data. On the other hand, though FGA could
improve the efficiency, the adjoint tomography method is still very computational demanding in
CPU time, memory and storage, since it is based on Born approximation and need to compute the
sensitivity kernels. In order to overcome these difficulties, we are working on the global optimization
method using networks and sparse parametrization techniques in order to make the most of the
supper efficiency and parallelizability of FGA in simulating seismic wave equations.

Spin-magnetization coupling in micro-magnetics. The spin-magnetization coupling in ferro-
magnetic materials is definitely a multiscale problem. We have studied this problem in quantum,
kinetic and fluid scalings [6, 5]. However, to study new models which can include more physical
details is always interesting. For example, in our work on the diffusion limit, we didn’t include the
self-induced electric field. We are thinking about to add a self-induced field in order to recover the
physical phenomena such as the linear response. A self-induced field will make the analysis more
difficult because then we don’t have the proper weighted L2 space and the associated conservation
law as we did in [5]. The other model we have been working with is the spin dynamics governed
by the Schrödinger-Maxwell system, and we want to analyze the semiclassical limit and coupling it
with LLG. The main difficulty here is that we don’t have enough regularity of the magnetic field,
so only some weakly coupling regime can be done so far. On the numerical side, to build efficient
numerical solver, investigate the influences of the boundary layers, and construct the asymptotic
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Figure 3: Solutions at different time by the hybrid method. Lower row: Bloch coefficient at the
lower band; upper row: Bloch coefficient at the upper band. At time t = 0 (left column), the wave
is located at the first band and the second band is empty. At time t = 0.15625 (middle column),
the inter-band transition is happening at the Dirac point. At time t = 0.3125 (right column), a
large part of the population is on the upper band.
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preserving scheme for coupling models in different scaling are delicate topics for me.

Models and methods in quantum physics. In the semiclassical method for quantum physics,
the main difficulty is that to describe a essential quantum effect such as the tunneling by a semiclas-
sical model, for which, we have developed non-diagonal systems and hybrid methods [7, 8, 9]. One
interesting phenomena I have being thinking is the Klein paradox in the Graphene layer, for which
the Schrödinger equation with a honeycomb lattice potential and a step potential is considered.
The difficulty in simulating this problem using semiclassical method such as Gaussian beam method
is from the jump discontinuity of the step potential, where quantum tunneling may happen. To
over come this difficulty, an interface condition over the discontinuity is considered to incorporate
with the semiclassical dynamics. One another topic we are working on is the FGA for the 3-D
Dirac equation and consider the semiclassical and non-relativity limits in different regime. The
new nature in FGA brought by the Dirac equation is that we need consider the coupling dynamics
in the two dimensional eigenspace due to the degeneracy of the eigenvalue of the Dirac Hamiltonian
[10], and the Berry connections are included in the coupling. And we are going to investigate the
limiting behavior for both the solution and FGA shall be considered in different regime.
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