
MATH 111A HOMEWORK 2 SOLUTIONS

22) If x and g are elements of the group G, prove that |x| = |g−1xg|. Deduce that |ab| = |ba|.
Solution. First observe that for any n ∈ N we have

(g−1xg)n = (g−1xg) · · · (g−1xg)︸ ︷︷ ︸
n times

= g−1x(gg−1)x · · ·x(gg−1)xg = g−1xng.

Now, if |x| = n is �nite, then xn = 1 and so (g−1xg)n = g−1xng = g−1g = 1. This shows that |g−1xg| ≤ |x|.
Since x and g are arbitary, the same argument shows that |x| = |g(g−1xg)g−1| ≤ |g−1xg|. This proves that
in fact |x| = |g−1xg|. On the other hand, if |x| =∞, then we must have |g−1xg| =∞, for otherwise

g−1xng = (g−1xg)n = 1 =⇒ xn = gg−1 = 1

for some n ∈ N, contradicting that |x| = ∞. In either case, we have proved that |x| = |g−1xg|. As a

consequence, we deduce that |ab| = |a−1(ab)a| = |ba|.

24) If a and b are commuting elements of G, prove that (ab)n = anbn for all n ∈ Z.
Solution. If n = 0 then clearly (ab)0 = 1 = a0b0. If n ∈ Z+, then we have

(ab)n = (ab) · · · (ab)︸ ︷︷ ︸
n times

= (a · · · a)︸ ︷︷ ︸
n times

(b · · · b)︸ ︷︷ ︸
n times

= anbn,

where we can rearrange the a's and b's since they commute. Finally, if n ∈ Z−, then

(ab)n = ((ab)|n|)−1

= ((a|n|b|n|)−1 (from the above)

= b−|n|a−|n| ((xy)−1 = y−1x− in general)

= (b−1 · · · b−1)︸ ︷︷ ︸
|n| times

(a−1 · · · a−1)︸ ︷︷ ︸
|n| times

Notice that since ab = ba, taking inverses on both sides, we get that b−1a−1 = a−b−1. Hence, a−1 and b−1

commute also. So, rearranging the a−1's and b−1's above, we see that

(ab)n = (a−1 · · · a−1)︸ ︷︷ ︸
|n| times

(b−1 · · · b−1)︸ ︷︷ ︸
|n| times

= anbn,

as desired. This completes the proof.

1d) For �xed n ∈ Z+ prove that the set of rational numbers whose denominators are relatively prime to

n is a subgroup under addition.

Solution. Let G be the set in question. We shall use Problem 26 from Homework1 to prove that G is

a subgroup of (Q,+). There are three things to check.

(1) G 6= ∅ : This is clear since (n, 1) = 1 and so 1 = 1
1
∈ G.
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(2)+(3) G is closed under + and inverses: Let p
q
, r
s
∈ G, where p, q, r, s ∈ Z with (q, n) = 1 = (s, n).

Then, their sum is equal to
p

q
+

r

s
=

ps+ qr

qs
,

which lies in G because if q and s are coprime with n then so is qs (if p is a prime that divides both n

and qs then it must divide either q or s also). Similarly, the inverse of p
q
is −p

q
, which lies in G because

(q, n) = 1 by assumption.

Thus, we have shown that G is a subgroup of Q under addition.

8) Let H and K be subgroups of G. Prove that H ∪K is a subgroup if and only if H ⊂ K or K ⊂ H.

Solution. First assume that H ∪K is a subgroup. Suppose on the contrary that H 6⊂ K and K 6⊂ H.

Then, there exist h ∈ H\K and k ∈ K\H. Since h, k ∈ H ∪ K and H ∪ K is a subgroup, we have

hk ∈ H ∪ K. Without loss of generality, we may assume that hk ∈ H. Now, since H is a subgroup,

h−1 ∈ H and so k = (h−1)(hk) ∈ H. This is a contradiction. Hence, either H ⊂ K or K ⊂ H.

Conversely, assume that H ⊂ K or K ⊂ H. Then, either H ∪K = K or H ∪K = H. In either case

H ∪K is a subgroup since H and K are.

10b) Prove that the intersection of an arbitrary nonempty collection of subgroups ofG is again a subgroup

of G (do not assume that the collection is countable).

Solution. Let {Hi}i∈H be an arbitrary nonempty collection of subgroups of G. We shall use Problem

26 on Homework 1 to show that H =
⋂

i∈H Hi is a subgroup of G. There are three things to check.

(1) H 6= ∅ : We have 1 ∈ H since 1 ∈ Hi for all i ∈ I and the intersection is nonempty.

(2)+(3) H is closed under multiplicationand inverses: Let h, k ∈ H. Then h, k ∈ Hi for all i ∈ I. Since

each Hi is a subgroup, we have hk ∈ Hi and h−1 ∈ Hi for all i ∈ I. This shows that hk ∈ H and h−1 ∈ H.

Therefore, indeed H is a subgroup of G.


