
MATH 111A HOMEWORK 3 SOLUTIONS

4) If n = 2k is even and n ≥ 4, show that z = rk is an element of order 2 which commutes with all

elements of D2n. Show also that z is the only nonidentity element of D2n which commutes with all elements

of D2n. [cf. Exercise 33 of Section 1.]

Solution. We shall use the following facts (see p. 25 of the textbook):

|r| = n ris = sr−i for 0 ≤ i ≤ n− 1 D2n = {1, r, r2, ..., rn−1, s, sr, sr2, ..., srn−1}.

(We will prove this without using Exercise 33.) There are three things to prove.

(1) rk has order 2: Notice that (rk)2 = rn = 1 and rk 6= 1 because |r| = n. It follows that |rk| = 2.

(2) rk commutes with all elements in D2n : Clearly

(rk)(ri) = rk+i = ri+k = (ri)(rk)

for all i = 0, 1, ..., n− 1. On the other hand, for 0 ≤ i ≤ n− 1 we have

(rk)(sri) = (rks)(ri)

= (sr−k)(ri) (since rks = sr−k)

= (srk)(ri) (r2k = 1 implies rk = r−k)

= (sri)(rk) (rkri = rirk)

and so rk commutes with all of the sri also. Thus, rk commutes with every element in D2n.

(3) rk is the only nonidentity element in D2n which commutes with all elements in D2n : Suppose that

x ∈ D2n and x 6= 1. If x = ri, 1 ≤ i ≤ n− 1 and i 6= k, then x does not commute with s, for otherwise

ris = sri = r−is =⇒ ri = r−i =⇒ r2i = 1.

This implies 2i ≥ n since |r| = n. Now, observe that r2i−n = 1 also, but

n ≤ 2i ≤ 2n− 2 =⇒ 0 ≤ 2i− n ≤ n− 2.

So, by de�nition of the order of r, we deduce that 2i − n = 0 and so i = k, which is a contradiction. On

the other hand, if x = sri, 1 ≤ i ≤ n− 1, then x does not commute with r, for otherwise

(r)(sri) = (sri)(r)

=⇒ sr−1ri = srir (rs = sr−1)

=⇒ ri−1 = ri+1

=⇒ r2 = 1.

But |r| = n ≥ 4 so we have a contradiction. Therefore, indeed rk is the only nonidentity element that

commutes with all elements in D2n.
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14) Let p be a prime. Show that an element has order p in Sn if and only if its cycle decomposition is a

product of commuting p-cycles. Show by an explicit example that this need not be true if p is not prime.

Solution. Since id does not have order p and the cycle decomposition of id is not a product of p-cycles,

we do not have to consider id in our proof. So let σ ∈ Sn\{id} and σ = σ1 · · ·σr be its cycle decomposition,

with li = |σi| ≥ 2 for every i (we need σ 6= id in order to have this). Then, we know that

|σ| = lcm{l1, ..., lr}.

Now suppose that σ has order p. Then p = lcm{l1, ..., lr}, and so li = p for all i, since p is prime

and li 6= 1 by hypothesis. This shows that the cycle decomposition of σ is a product of p-cycles (they

commute as they are disjoint by construction). Conversely, suppose that li = p for all i. Then clearly

|σ| = lcm{l1, ..., lr} = p, which proves the claim.

This need not be true if p is not prime. For example, take p = 6, we have that

|(12)(345)| = 6

and yet (12)(345) is not a product of 6-cycles.

2) If ϕ : G → H is an isomorphism, prove that |ϕ(x)| = |x| for all x ∈ G. Deduce that any two

isomorphic groups have the same number of elements of order n for each n ∈ Z+. Is the result true if ϕ is

only assume to be a homomorphism?

Solution. From Exercise 1 ϕ(xn) = ϕ(x)n for all n ∈ Z (when n = 0 we have ϕ(1G) = 1H). If |x| = m

is �nite, then xm = 1G and so ϕ(x)m = 1H , which shows |ϕ(x)| ≤ |x|. So |ϕ(x)| = k is �nite also. Now,

ϕ(x)k = 1H =⇒ ϕ(xk) = 1H =⇒ xk = 1G

since ϕ is injective. This shows that |x| ≤ |ϕ(x)| and hence in fact |ϕ(x)| = |x|. On the other hand, if

|x| = ∞, then |ϕ(x)| = ∞ also, for otherwise ϕ(x)k = 1 for some k ∈ N. The same calculation above

shows that xk = 1G, which comtradicts that |x| =∞.

Fix n ∈ Z+. Let A = {x ∈ G | |x| = n} and B = {y ∈ H | |y| = n}. We want to show that

card(A) = card(B), i.e. there exists a bijection between A and B. Consider the map

ϕ̃ : A→ B de�ned by ϕ̃(x) = ϕ(x),

i.e. ϕ̃ is obtained by restricting the domain of ϕ to A and the codomain to B. Since |x| = n implies

|ϕ(x)| = n, this is well-de�ned (the image ϕ̃(x) indeed lies in B). Injectivity follows from that of ϕ. For

surjectivity, suppose that y ∈ B. Let x ∈ G be such that ϕ(x) = y (which exists since ϕ is surjective).

Then |x| = |ϕ(x)| = |y| = n. Hence, x ∈ A and ϕ̃(x) = y, proving surjectivity. Thus, ϕ̃ is a bijection.

This result need not be true if ϕ is only a homomorphism. Let ϕ : {−1, 1} → {1} be the trivial

homomorphism. We have | − 1| = 2 but |ϕ(−1)| = |1| = 1.

4) Prove that the multiplicative groups R− {0} and C− {0} are not isomorphic.

Solution. Notice that i ∈ C−{0} has order 4. By Exercise 2, if R−{0} and C−{0} were isomorphic,

then there would exists x ∈ R − {0} with |x| = 4. This would imply x4 = 1 and so x = ±1. But |1| = 1

and | − 1| = 2, so we have a contradiction.


