MATH 111A HOMEWORK 3 SOLUTIONS

4) If n = 2k is even and n > 4, show that z = r* is an element of order 2 which commutes with all
elements of D,,. Show also that z is the only nonidentity element of Ds, which commutes with all elements
of Dy,. |cf. Exercise 33 of Section 1.|

Solution. We shall use the following facts (see p. 25 of the textbook):

Ir| =n r's=sr " for0<i<n-—1 Do, = {1, 7, 7% .,r" s, sr sr? L s

(We will prove this without using Exercise 33.) There are three things to prove.
(1) r* has order 2: Notice that (r*)? = r™ = 1 and r* # 1 because |r| = n. It follows that |[r*| = 2.

(2) r* commutes with all elements in Dy, : Clearly
(T‘k)(T‘i) — T,k+i — T,iJrk — (Tz>(7,k)

forall i =0,1,...,n — 1. On the other hand, for 0 <7 <n — 1 we have

(") (sr') = (Fs)(r)
= (sr®)(r%) (since r¥s = sr™")
= (sr™)(r") (r** = 1 implies r* = ")
= (sr))(r") (rkrt = rirk)
and so ¥ commutes with all of the sr? also. Thus, ¥ commutes with every element in Ds,,.

(3) r* is the only nonidentity element in Ds, which commutes with all elements in D,, : Suppose that

x €Dy, andx#1. Ifx=1r"1<i<n-—1andi#k, then x does not commute with s, for otherwise
ris=srl=rTls = r'=r"" = r¥=1.

This implies 2i > n since |r| = n. Now, observe that 7~™ = 1 also, but

n<21<2n—-2 = 0<2t—n<n-—2.

So, by definition of the order of r, we deduce that 2i —n = 0 and so ¢ = k, which is a contradiction. On

the other hand, if z = sr%, 1 <i < n — 1, then 2 does not commute with r, for otherwise

(r)(sr') = (s1")(r)

—  sr it = sy (rs =sr™h)
s 7,,1—1 _ TH_l
— =1

But |r| = n > 4 so we have a contradiction. Therefore, indeed r* is the only nonidentity element that

commutes with all elements in Ds,,.
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14) Let p be a prime. Show that an element has order p in S, if and only if its cycle decomposition is a
product of commuting p-cycles. Show by an explicit example that this need not be true if p is not prime.
Solution. Since ¢d does not have order p and the cycle decomposition of ¢d is not a product of p-cycles,
we do not have to consider id in our proof. So let o € S,,\{id} and 0 = oy - - - 0, be its cycle decomposition,

with [; = |o;| > 2 for every i (we need o # id in order to have this). Then, we know that
lo| = lem{ly, ..., 1, }.

Now suppose that o has order p. Then p = lem{ly,...,l.}, and so [; = p for all 4, since p is prime
and [; # 1 by hypothesis. This shows that the cycle decomposition of ¢ is a product of p-cycles (they
commute as they are disjoint by construction). Conversely, suppose that [; = p for all i. Then clearly
lo| = lem{ly, ...,l.} = p, which proves the claim.

This need not be true if p is not prime. For example, take p = 6, we have that
1(12)(345)] = 6

and yet (12)(345) is not a product of 6-cycles.

2) If ¢ : G — H is an isomorphism, prove that |¢(z)| = |z| for all z € G. Deduce that any two
isomorphic groups have the same number of elements of order n for each n € Z*. Is the result true if ¢ is
only assume to be a homomorphism?

Solution. From Exercise 1 ¢(a™) = o(x)™ for all n € Z (when n = 0 we have ¢(1g) = 1g). If || =m
is finite, then 2™ = 15 and so p(z)™ = 1y, which shows |p(z)| < |z|. So |p(z)| = k is finite also. Now,

p(@)f =1y = p(a") =1y = " =1¢

since ¢ is injective. This shows that |z| < |¢(x)| and hence in fact |p(z)| = |z|. On the other hand, if
|z| = oo, then |p(x)| = oo also, for otherwise ¢(z)¥ = 1 for some k € N. The same calculation above
shows that 2% = 1¢, which comtradicts that |z| = co.

Fixn € ZT. Let A ={x € G| |z] =n} and B = {y € H | |y = n}. We want to show that
card(A) = card(B), i.e. there exists a bijection between A and B. Consider the map

©:A— B defined by ¢(x) = ¢(x),

i.e. ¢ is obtained by restricting the domain of ¢ to A and the codomain to B. Since |z| = n implies
lo(x)| = n, this is well-defined (the image @(x) indeed lies in B). Injectivity follows from that of . For
surjectivity, suppose that y € B. Let z € G be such that ¢(x) = y (which exists since ¢ is surjective).
Then |z| = |p(z)| = |y| = n. Hence, z € A and ¢(x) = y, proving surjectivity. Thus, ¢ is a bijection.

This result need not be true if ¢ is only a homomorphism. Let ¢ : {—1,1} — {1} be the trivial
homomorphism. We have | — 1| = 2 but |p(—1)| = [1| = 1.

4) Prove that the multiplicative groups R — {0} and C — {0} are not isomorphic.
Solution. Notice that i € C — {0} has order 4. By Exercise 2, if R — {0} and C — {0} were isomorphic,
then there would exists z € R — {0} with |z| = 4. This would imply z* = 1 and so z = 1. But |1] =1

and | — 1| = 2, so we have a contradiction.




