MATH 111A HOMEWORK 5 SOLUTIONS

3) Let A be an abelian group and let B be a subgroup of A. Prove that A/B is abelian. Give an example of a non-abelian group G containing a proper normal subgroup N such that G/N is abelian.

Solution. Let a_1B and a_2B be arbitrary elements in A/B, where $a_1, a_2 \in A$. Then

$$(a_1B)(a_2B) = a_1a_2B$$
 (definition of multiplication in A/B)
 $= a_2a_1B$ (A is abelian)
 $= (a_2B)(a_1B)$ (definition of multiplication in A/B).

This shows that A/B is abelian, as desired.

For the example, consider $G = D_6$, which is non-abelian. Recall that

$$D_6 = \{1, r, r^2, s, sr, sr^2\}.$$

We shall show that $K = \{1, r, r^2\}$ is a normal subgroup of D_6 by showing that it is the kernel of some group homomorphism. So define a map $\varphi : D_6 \to \mathbb{Z}/2\mathbb{Z}$ by setting

$$\varphi(s^i r^j) = \overline{i}$$
 for any $i, j \in \mathbb{Z}$.

This is well-defined because |s|=2. We shall show that φ is a homomorphism, i.e.

$$\varphi(xy) = \varphi(x) + \varphi(y)$$
 for all $x, y \in D_6$.

We consider two cases.

(1) $x = s^i r^j$ and $y = s^k r^l$ with k even (so $s^k = 1$):

$$\varphi(s^{i}r^{j}s^{k}r^{l}) = \varphi(s^{i}r^{j+l}) \text{ (since } s^{k} = 1)$$

$$= \overline{i}$$

$$= \overline{i} + \overline{k} \text{ (} \overline{k} = \overline{0} \text{ since } k \text{ even)}$$

$$= \varphi(s^{i}r^{j}) + \varphi(s^{k}r^{l}).$$

(2) $x = s^i r^j$ and $y = s^k r^l$ with k odd (so $s^k = s$):

$$\varphi(s^{i}r^{j}s^{k}r^{l}) = \varphi(s^{i}s^{k}r^{-j}r^{l})$$

$$= \varphi(s^{i+k}r^{l-j})$$

$$= \overline{i+k}$$

$$= \overline{i}+\overline{k}$$

$$= \varphi(s^{i}r^{j}) + \varphi(s^{k}r^{l}).$$

Hence, φ is a homomorphism. Notice that

$$\ker(\varphi) = \{s^i r^j \in D_6 \mid \overline{i} = \overline{0}\} = \{1, r, r^2\} = K.$$

Hence, K is a normal subgroup of D_6 by Proposition 7 on p.82. Now, the quotient group $D_6/K = \{K, sK\}$ is clearly abelian since the identity K commutes with every element and sK commutes with itself.

5) Use the preceding exercise (in the quotient group G/N we have $(gN)^{\alpha} = g^{\alpha}N$ for all $\alpha \in \mathbb{Z}$) to prove that the order of the element gN in G/N is n, where n is the smallest positive integer such that $g^n \in N$ (and gN has infinite order if no such positive integer exists). Give an example to show that the order of gN in G/N may be strictly smaller than the order of g in G.

Solution. For any $\alpha \in \mathbb{Z}$ we have $(gN)^{\alpha} = g^{\alpha}N$ by the previous exercise. Furthermore, notice that

$$g^{\alpha}N = N \iff g^{\alpha} \in N.$$

Hence, if $g^{\alpha} \notin N$ for all $\alpha \in \mathbb{N}$ then

$$(gN)^{\alpha} \neq N \quad \text{for all } \alpha \in \mathbb{N}$$

and so $|gN| = \infty$ (recall that N = identity of G/N). On the other hand, if there exists $\alpha \in \mathbb{N}$ with $g^{\alpha} \in N$, and n is the smallest as stated in the problem, then

$$(gN)^n = g^n N = N$$

and so $|gN| \le n$. If $\alpha \in \mathbb{N}$ is such that $(gN)^{\alpha} = g^{\alpha}N = N$, then $g^{\alpha} \in N$ and so $\alpha \ge n$ by minimality of n. It follows that |gN| = n, as claimed.

For the example, let G be any non-trivial group so that it contains some element g of order ≥ 2 . Take N = G so that G/G is the trivial group. Consequently, gG has order 1 in G/G, which is strictly smaller than the order of g in G.

- 14) Consider the additive quotient group \mathbb{Q}/\mathbb{Z} .
- a) Show that every coset of \mathbb{Z} in \mathbb{Q} contains exactly one representative $q \in \mathbb{Q}$ in the range $0 \leq q < 1$.

Solution. Let $r + \mathbb{Z}$ be an arbitrary coset of \mathbb{Z} in \mathbb{Q} , where $r \in \mathbb{Q}$. Let [r] denote the integer part of r (i.e. the greatest integer that is smaller or equal to r). Let q = r - [r]. Then $0 \le q < 1$ and

$$q + \mathbb{Z} = r - [r] + \mathbb{Z} = r + \mathbb{Z}$$
 (since $[r] \in \mathbb{Z}$).

This shows that every coset has at least one representative $q \in \mathbb{Q}$ in the range $0 \le q < 1$.

To show that there is at most one such representative, suppose that $p, q \in [0, 1) \cap \mathbb{Q}$ and $p + \mathbb{Z} = q + \mathbb{Z}$. This implies that $p - q + \mathbb{Z} = \mathbb{Z}$ and so $p - q \in \mathbb{Z}$. But

$$0 \le p, q < 1 \implies -1 < p - q < 1.$$

So for p-q to be an integer we must have p-q=0, i.e. p=q. Thus, we have shown that every coset of \mathbb{Z} in \mathbb{Q} has exactly one representative $q \in \mathbb{Q} \cap [0,1)$.

b) Show that every element of \mathbb{Q}/\mathbb{Z} has finite order but that there are elements of arbitrarily large order.

Solution. Let $r + \mathbb{Z} \in \mathbb{Q}/\mathbb{Z}$, where $r \in \mathbb{Q}$. Write $r = \frac{m}{n}$, with $m, n \in \mathbb{Z}$ and n > 0. Then

$$n(r + \mathbb{Z}) = m + \mathbb{Z} = \mathbb{Z} = \text{identity of } \mathbb{Q}/\mathbb{Z}$$

and so $|r + \mathbb{Z}| \leq n$. This shows that $r + \mathbb{Z}$ has finite order.

Now, for any $n \in \mathbb{N}$ consider the element $\frac{1}{n} + \mathbb{Z}$. Notice that $k(\frac{1}{n} + \mathbb{Z}) = \frac{k}{n} + \mathbb{Z}$ and

$$\frac{k}{n} + \mathbb{Z} = \mathbb{Z} \iff \frac{k}{n} \in \mathbb{Z} \quad \text{(i.e. } n \text{ divides } k\text{)}.$$

Hence, the smallest positive integer k such that

$$k(\frac{1}{n} + \mathbb{Z}) = \mathbb{Z}$$

is n and so $\left|\frac{1}{n} + \mathbb{Z}\right| = n$. Since $n \in \mathbb{N}$ is arbitrary, we see that elements in \mathbb{Q}/\mathbb{N} have arbitrarily large order.

22a) Prove that if H and K and normal subgroups of a group G then their intersection $H \cap K$ is also a normal subgroup of G.

Solution. Recall that by Theorem 6 on p.82 for a subgroup N in G we have

$$N \triangleleft G \iff gNg^{-1} \subset N \text{ for all } g \in G.$$

So let $g \in G$ and $x \in H \cap K$. Then $x \in H$ and $x \in K$, so

$$gxg^{-1} \in gHg^{-1} \subset H$$
 and $gxg^{-1} \in gKg^{-1} \subset K$

because H and K are normal in G. We deduce that

$$gxg^{-1} \in H \cap K$$
,

and so $g(H \cap K)g^{-1} \subset H \cap K$, proving that $H \cap K \triangleleft G$.

24) Prove that if $N \triangleleft G$ and H is any subgroup of G then $N \cap H \triangleleft H$.

Solution. By homework2 Problem 10b), we know that $N \cap H$ is a subgroup of G. Since $N \cap H \subset H$, it is a subgroup of H also. Now, to show that it is normal in H, we use the same criterion as in 22a). So let $h \in H$ and $x \in N \cap H$. Then $x \in N$ and $x \in H$, and we have

$$hxh^{-1} \in hNh^{-1} \subset N \quad (\text{since } N \lhd G \text{ and } h \in G)$$

$$hxh^{-1} \in H \quad (\text{since } h, x \in H \text{ and } H \leq G).$$

This shows that $hxh^{-1} \in N \cap H$ and so $h(N \cap H)h^{-1} \subset N \cap H$. This proves that $N \cap H$ is normal in H.