MATH 111A HOMEWORK 6 SOLUTIONS

7) Let H < G and define a relation ~ on G by a ~ b if and only if b'a € H. Prove that ~ is an

equivalence relation and describe the equivalence classes for each a € G. Use this to prove Proposition 4.
Solution. First we show that ~ is an equivalence relation, i.e. it is reflexive, symmetric, and transitive.
(i) Reflexivity: For any a € G, we have a 'a =1 € H because H is a subgroup of G, whence a ~ a.

(ii) Symmetry: If a ~ b then b~'a € H. Since H is closed under inverses, we have
a'b=(b"'a)"' € H whence b~ a also.
(iii) Transitivity: If a ~ band b ~ cthen b™'a € H and ¢~ 'b € H. Since H is closed under multiplication,
cta=(c')(b"'a) € H whence a ~ c also.

Next we show that the equivalence class [a] of any a € G is the left coset aH. Indeed, we have

bela] <= b~a
— blaceH
< b'la=h forsomehc H
<= b=ah™' forsomehc H
<= b=uah forsomeh e H (because H is closed under inverses)
<~ beaH.

Finally, we use this to prove Proposition 4. Recall that:

Proposition 4. Let N be any subgroup of the group G. The set of left cosets N in G form a partition of
G. Furthermore, for all u,v € G we have uN = vN if and only if v-iu € N and in particular, uN = vN
of and only if uw and v are representatives of the same coset.

Let ~ be the relation on G given by u ~ v if and only if v™'u € N. Then [u] = uN by the above. There
are two claims to prove (the claim after “in particular” follows from claim (ii)).

(i) The set of left cosets N in G form a partition of G: It is a fact (from Math 8 for example) that the
equivalence classes of an equivalence relation on G form a partition of G. Since the left cosets N are the
equivalence classes of ~ the claim follows.

(ii) uN = vN if and only if v~'u € N for all u,v € G: By definition of equivalence classes, we have

[u] = ] <= u~wv, thatis, uN =vN <= v 'ue N.

11) Let H < K < G. Prove that [G : H] = [G : K][K : H| (do not assume G is finite).
Solution. Let S be a set of (left) coset representatives of K in G. Define a map

fiSxK/H—G/H
1
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by setting f(g,kH) = gkH for g € S and k € K. Since
G H) = |G/H], [G: K] = |G/K| = S, and [K : H] = |K/H]|
by definition, it suffices to show that f is well-defined and bijective.
(1) Well-defined: If ky H = koH then gky H = gkoH and so f(g,k1H) = f(g, koH).
(ii) Injectivity: If f(g1,k1H) = f(go, koH) then gik1H = goko H. We deduce that
glk:l € ggk‘gH — 91]{31 € gngK (since H< K)
= g1 € g2K (since ki, kg € K)
=—> ¢; and g represents the same left coset of K in G
— g1 =gz (since g1,92 €9).
Consequently, g1k1H = gokoH —> k1H = kyH, and so (g1, k1H) = (go, ko H), proving injectivity.
(iii) Surjectivity: Let gH € G/H and consider the coset gi. We have gK = gK for some g € S by
definition of S. So we can write g = gk for some k € K. Then, (§,kH) € S x K/H and
flg,kH) = gkH = gH,

which proves that f is surjective.

This proves that f is bijective and completes the proof.

22) Use Lagrange’s Theorem in the multiplicative group (Z/nZ)* to prove Euler’s Theoreme: a*™ =1
(mod n) for every integer a relatively prime to n, where ¢ denotes the Euler’s ¢-function.

Solution. Recall that (Z/nZ)* = {a € Z/nZ | (a,n) = 1} (see Proposition 4 on p.10 for example). So,
if a € Z and (a,n) =1, then @ € (Z/nZ)* and (a) < (Z/nZ)*. By Lagrange’s Theorem, we have

|(@)| divides |(Z/nZ)™|.
Since |(@)| = |a| (proved previously in class) and |(Z/nZ)*| = ¢(n) by definition, we deduce that
@ divides p(n) = @*™ =1 = ™ =1 (mod n),

as desired.

4) Let G = (x) be a finite cyclic group of order m, i.e. G = {2" | n € Z} with |z| =m < oc.
a) Prove that G ~ Z/mZ.
Proof. Let ¢ : Z — G be defined by ¢(n) = z". It is a homomorphism because

) = 2" = 2"z™ = p(n)p(m)

o(n+m
and is clearly surjective because G = {z" | n € Z}. The kernel of ¢ is the subgroup
ker(p) = {neZ|a" =1}
= {n € Z|mdivides n} (because |x| =m)

= mZ.

Hence, by the first isomorphism theorem, we have Z/mZ ~ G.
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b) For every positive divisor k of m there exists a subgroup H of G with |G/H| = k.
Proof. Let k € N be a divisor of m and write k = nm for n € N. Then |z*| = n (see Proposition 5 on

p. 57; you may also cite that it was proved in class) and so |(z*)| = |2*| = n. Taking H = (z*), we have
|G/H| = |G|/[H| =m/n =k

by Lagrange’s Theorem, as desired.




