MATH 111A HOMEWORK 6 SOLUTIONS

7) Let $H \leq G$ and define a relation \sim on G by $a \sim b$ if and only if $b^{-1}a \in H$. Prove that \sim is an equivalence relation and describe the equivalence classes for each $a \in G$. Use this to prove Proposition 4.

Solution. First we show that \sim is an equivalence relation, i.e. it is reflexive, symmetric, and transitive.

- (i) Reflexivity: For any $a \in G$, we have $a^{-1}a = 1 \in H$ because H is a subgroup of G, whence $a \sim a$.
- (ii) Symmetry: If $a \sim b$ then $b^{-1}a \in H$. Since H is closed under inverses, we have

$$a^{-1}b = (b^{-1}a)^{-1} \in H$$
 whence $b \sim a$ also.

(iii) Transitivity: If $a \sim b$ and $b \sim c$ then $b^{-1}a \in H$ and $c^{-1}b \in H$. Since H is closed under multiplication,

$$c^{-1}a = (c^{-1}b)(b^{-1}a) \in H$$
 whence $a \sim c$ also.

Next we show that the equivalence class [a] of any $a \in G$ is the left coset aH. Indeed, we have

$$b \in [a] \iff b \sim a$$
 $\iff b^{-1}a \in H$
 $\iff b^{-1}a = h \text{ for some } h \in H$
 $\iff b = ah^{-1} \text{ for some } h \in H$
 $\iff b = ah \text{ for some } h \in H \text{ (because } H \text{ is closed under inverses)}$
 $\iff b \in aH.$

Finally, we use this to prove Proposition 4. Recall that:

Proposition 4. Let N be any subgroup of the group G. The set of left cosets N in G form a partition of G. Furthermore, for all $u, v \in G$ we have uN = vN if and only if $v^{-1}u \in N$ and in particular, uN = vN if and only if u and v are representatives of the same coset.

Let \sim be the relation on G given by $u \sim v$ if and only if $v^{-1}u \in N$. Then [u] = uN by the above. There are two claims to prove (the claim after "in particular" follows from claim (ii)).

- (i) The set of left cosets N in G form a partition of G: It is a fact (from Math 8 for example) that the equivalence classes of an equivalence relation on G form a partition of G. Since the left cosets N are the equivalence classes of \sim the claim follows.
 - (ii) uN = vN if and only if $v^{-1}u \in N$ for all $u, v \in G$: By definition of equivalence classes, we have

$$[u] = [v] \iff u \sim v, \text{ that is, } uN = vN \iff v^{-1}u \in N.$$

11) Let $H \leq K \leq G$. Prove that [G:H] = [G:K][K:H] (do not assume G is finite).

Solution. Let S be a set of (left) coset representatives of K in G. Define a map

$$f: S \times K/H \to G/H$$

by setting f(g, kH) = gkH for $g \in S$ and $k \in K$. Since

$$[G:H] = |G/H|, [G:K] = |G/K| = |S|, \text{ and } [K:H] = |K/H|$$

by definition, it suffices to show that f is well-defined and bijective.

- (i) Well-defined: If $k_1H = k_2H$ then $gk_1H = gk_2H$ and so $f(g, k_1H) = f(g, k_2H)$.
- (ii) Injectivity: If $f(g_1, k_1H) = f(g_2, k_2H)$ then $g_1k_1H = g_2k_2H$. We deduce that

$$g_1k_1 \in g_2k_2H \implies g_1k_1 \in g_2k_2K \text{ (since } H \leq K)$$

$$\implies g_1 \in g_2K \text{ (since } k_1, k_2 \in K)$$

$$\implies g_1 \text{ and } g_2 \text{ represents the same left coset of } K \text{ in } G$$

$$\implies g_1 = g_2 \text{ (since } g_1, g_2 \in S).$$

Consequently, $g_1k_1H = g_2k_2H \implies k_1H = k_2H$, and so $(g_1, k_1H) = (g_2, k_2H)$, proving injectivity.

(iii) Surjectivity: Let $gH \in G/H$ and consider the coset gK. We have $gK = \tilde{g}K$ for some $\tilde{g} \in S$ by definition of S. So we can write $g = \tilde{g}k$ for some $k \in K$. Then, $(\tilde{g}, kH) \in S \times K/H$ and

$$f(\tilde{g}, kH) = \tilde{g}kH = gH,$$

which proves that f is surjective.

This proves that f is bijective and completes the proof.

22) Use Lagrange's Theorem in the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ to prove Euler's Theoreme: $a^{\varphi(n)} \equiv 1 \pmod{n}$ for every integer a relatively prime to n, where φ denotes the Euler's φ -function.

Solution. Recall that $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\overline{a} \in \mathbb{Z}/n\mathbb{Z} \mid (a,n)=1\}$ (see Proposition 4 on p.10 for example). So, if $a \in \mathbb{Z}$ and (a,n)=1, then $\overline{a} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ and $\langle \overline{a} \rangle \leq (\mathbb{Z}/n\mathbb{Z})^{\times}$. By Lagrange's Theorem, we have

$$|\langle \overline{a} \rangle|$$
 divides $|(\mathbb{Z}/n\mathbb{Z})^{\times}|$.

Since $|\langle \overline{a} \rangle| = |\overline{a}|$ (proved previously in class) and $|(\mathbb{Z}/n\mathbb{Z})^{\times}| = \varphi(n)$ by definition, we deduce that

$$|\overline{a}| \text{ divides } \varphi(n) \implies \overline{a}^{\varphi(n)} = \overline{1} \implies a^{\varphi(n)} \equiv 1 \text{ (mod } n),$$

as desired.

- 4) Let $G = \langle x \rangle$ be a finite cyclic group of order m, i.e. $G = \{x^n \mid n \in \mathbb{Z}\}$ with $|x| = m < \infty$.
- a) Prove that $G \simeq \mathbb{Z}/m\mathbb{Z}$.

Proof. Let $\varphi: \mathbb{Z} \to G$ be defined by $\varphi(n) = x^n$. It is a homomorphism because

$$\varphi(n+m) = x^{n+m} = x^n x^m = \varphi(n)\varphi(m)$$

and is clearly surjective because $G = \{x^n \mid n \in \mathbb{Z}\}$. The kernel of φ is the subgroup

$$\ker(\varphi) = \{n \in \mathbb{Z} \mid x^n = 1\}$$

$$= \{n \in \mathbb{Z} \mid m \text{ divides } n\} \text{ (because } |x| = m\}$$

$$= m\mathbb{Z}.$$

Hence, by the first isomorphism theorem, we have $\mathbb{Z}/m\mathbb{Z} \simeq G$.

b) For every positive divisor k of m there exists a subgroup H of G with |G/H| = k.

Proof. Let $k \in \mathbb{N}$ be a divisor of m and write k = nm for $n \in \mathbb{N}$. Then $|x^k| = n$ (see Proposition 5 on p. 57; you may also cite that it was proved in class) and so $|\langle x^k \rangle| = |x^k| = n$. Taking $H = \langle x^k \rangle$, we have

$$|G/H| = |G|/|H| = m/n = k$$

by Lagrange's Theorem, as desired.