
MATH 111A HOMEWORK 6 SOLUTIONS

7) Let H ≤ G and de�ne a relation ∼ on G by a ∼ b if and only if b−1a ∈ H. Prove that ∼ is an

equivalence relation and describe the equivalence classes for each a ∈ G. Use this to prove Proposition 4.

Solution. First we show that ∼ is an equivalence relation, i.e. it is re�exive, symmetric, and transitive.

(i) Re�exivity: For any a ∈ G, we have a−1a = 1 ∈ H because H is a subgroup of G, whence a ∼ a.

(ii) Symmetry: If a ∼ b then b−1a ∈ H. Since H is closed under inverses, we have

a−1b = (b−1a)−1 ∈ H whence b ∼ a also.

(iii) Transitivity: If a ∼ b and b ∼ c then b−1a ∈ H and c−1b ∈ H. Since H is closed under multiplication,

c−1a = (c−1b)(b−1a) ∈ H whence a ∼ c also.

Next we show that the equivalence class [a] of any a ∈ G is the left coset aH. Indeed, we have

b ∈ [a] ⇐⇒ b ∼ a

⇐⇒ b−1a ∈ H

⇐⇒ b−1a = h for some h ∈ H

⇐⇒ b = ah−1 for some h ∈ H

⇐⇒ b = ah for some h ∈ H (because H is closed under inverses)

⇐⇒ b ∈ aH.

Finally, we use this to prove Proposition 4. Recall that:

Proposition 4. Let N be any subgroup of the group G. The set of left cosets N in G form a partition of

G. Furthermore, for all u, v ∈ G we have uN = vN if and only if v−1u ∈ N and in particular, uN = vN

if and only if u and v are representatives of the same coset.

Let ∼ be the relation on G given by u ∼ v if and only if v−1u ∈ N . Then [u] = uN by the above. There

are two claims to prove (the claim after �in particular� follows from claim (ii)).

(i) The set of left cosets N in G form a partition of G: It is a fact (from Math 8 for example) that the

equivalence classes of an equivalence relation on G form a partition of G. Since the left cosets N are the

equivalence classes of ∼ the claim follows.

(ii) uN = vN if and only if v−1u ∈ N for all u, v ∈ G: By de�nition of equivalence classes, we have

[u] = [v] ⇐⇒ u ∼ v, that is, uN = vN ⇐⇒ v−1u ∈ N.

11) Let H ≤ K ≤ G. Prove that [G : H] = [G : K][K : H] (do not assume G is �nite).

Solution. Let S be a set of (left) coset representatives of K in G. De�ne a map

f : S ×K/H → G/H
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by setting f(g, kH) = gkH for g ∈ S and k ∈ K. Since

[G : H] = |G/H|, [G : K] = |G/K| = |S|, and [K : H] = |K/H|

by de�nition, it su�ces to show that f is well-de�ned and bijective.

(i) Well-de�ned: If k1H = k2H then gk1H = gk2H and so f(g, k1H) = f(g, k2H).

(ii) Injectivity: If f(g1, k1H) = f(g2, k2H) then g1k1H = g2k2H. We deduce that

g1k1 ∈ g2k2H =⇒ g1k1 ∈ g2k2K (since H ≤ K)

=⇒ g1 ∈ g2K (since k1, k2 ∈ K)

=⇒ g1 and g2 represents the same left coset of K in G

=⇒ g1 = g2 (since g1, g2 ∈ S).

Consequently, g1k1H = g2k2H =⇒ k1H = k2H, and so (g1, k1H) = (g2, k2H), proving injectivity.

(iii) Surjectivity: Let gH ∈ G/H and consider the coset gK. We have gK = g̃K for some g̃ ∈ S by

de�nition of S. So we can write g = g̃k for some k ∈ K. Then, (g̃, kH) ∈ S ×K/H and

f(g̃, kH) = g̃kH = gH,

which proves that f is surjective.

This proves that f is bijective and completes the proof.

22) Use Lagrange's Theorem in the multiplicative group (Z/nZ)× to prove Euler's Theoreme: aϕ(n) ≡ 1

(mod n) for every integer a relatively prime to n, where ϕ denotes the Euler's ϕ-function.

Solution. Recall that (Z/nZ)× = {a ∈ Z/nZ | (a, n) = 1} (see Proposition 4 on p.10 for example). So,

if a ∈ Z and (a, n) = 1, then a ∈ (Z/nZ)× and 〈a〉 ≤ (Z/nZ)×. By Lagrange's Theorem, we have

|〈a〉| divides |(Z/nZ)×|.

Since |〈a〉| = |a| (proved previously in class) and |(Z/nZ)×| = ϕ(n) by de�nition, we deduce that

|a| divides ϕ(n) =⇒ aϕ(n) = 1 =⇒ aϕ(n) ≡ 1 (mod n),

as desired.

4) Let G = 〈x〉 be a �nite cyclic group of order m, i.e. G = {xn | n ∈ Z} with |x| = m <∞.

a) Prove that G ' Z/mZ.
Proof. Let ϕ : Z→ G be de�ned by ϕ(n) = xn. It is a homomorphism because

ϕ(n+m) = xn+m = xnxm = ϕ(n)ϕ(m)

and is clearly surjective because G = {xn | n ∈ Z}. The kernel of ϕ is the subgroup

ker(ϕ) = {n ∈ Z | xn = 1}

= {n ∈ Z | m divides n} (because |x| = m)

= mZ.

Hence, by the �rst isomorphism theorem, we have Z/mZ ' G.
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b) For every positive divisor k of m there exists a subgroup H of G with |G/H| = k.

Proof. Let k ∈ N be a divisor of m and write k = nm for n ∈ N. Then |xk| = n (see Proposition 5 on

p. 57; you may also cite that it was proved in class) and so |〈xk〉| = |xk| = n. Taking H = 〈xk〉, we have

|G/H| = |G|/|H| = m/n = k

by Lagrange's Theorem, as desired.


