MATH 111A HOMEWORK 9 SOLUTIONS

8) Prove that if H has finite index n then there exists $K \triangleleft G$ with $K \leq H$ and $[G:K] \leq n!$.

Proof. Let A = G/H be the left coset space of H in G. Let G act on G/H via multiplication, i.e.

$$g \cdot aH = gaH$$
 for all $g \in G$ and $aH \in G/H$.

Let $f: G \to S_A$ be the homomorphism corresponding to this action, i.e.

$$f(g) = \sigma_g$$
, where $\sigma_g(aH) = gaH$.

Let $K = \ker(f)$. Then K is a normal subgroup of G.

(i) $K \leq H$: Let $k \in K$. Then $k \in \ker(f)$ and so $f(k) = \sigma_k$ is the identity on G/H. In particular

$$\sigma_k(H) = H \implies kH = H \implies k \in H.$$

Thus, indeed $K \leq H$.

(ii) $[G:K] \leq n!$: By the First Isomorphism Theorem, we have

$$G/K \simeq \operatorname{Im}(f)$$

and so $[G:K] = |\operatorname{Im}(f)|$. But $\operatorname{Im}(f) \leq S_A$ and S_A is isomorphic to S_n since |A| = [G:H] = n. Thus

$$[G:K] = |\text{Im}(f)| < |S_A| = n!$$

as desired.

2) Suppose $a, b \in A$ and $g \in G$ with $b = g \cdot a$. Show that $G_b = gG_ag^{-1}$.

Proof. For any $x \in G$ we have

$$x \in G_b \iff x \cdot b = b$$
 $\iff x \cdot (g \cdot a) = g \cdot a \quad \text{(because } b = g \cdot a\text{)}$
 $\iff (xg) \cdot a = g \cdot a \quad \text{(property of a group action)}$
 $\iff (g^{-1}xg) \cdot a = a \quad \text{(property of a group action)}$
 $\iff g^{-1}xg \in G_a$
 $\iff x \in gG_ag^{-1} \quad \text{(multiply } g \text{ on the left and } g^{-1} \text{ on the right)}$

Thus, we have shown that $G_b = gG_ag^{-1}$.

4) Let $\sigma \in S_n$ non-identity and suppose $(a_1, ..., a_l)$, with $l \geq 2$, is one of the cycles in the disjoint cycle decomposition of σ . Let $G = \langle \sigma \rangle \leq S_n$, $A = \{1, ..., n\}$, and $\sigma^m \cdot a = \sigma^m(a)$ for $m \in \mathbb{Z}$ and $a \in A$. Show that $\mathcal{O}(a_1) = \{a_1, ..., a_l\}.$

Proof. By definition

$$\mathcal{O}(a_1) = \{x \cdot a_1 \mid x \in G\} = \{\sigma^m(a_1) \mid m \in \mathbb{Z}\},\$$

where the second equality follows because $G = \langle \sigma \rangle$. We want to determine these images $\sigma^m(a_1)$.

Now, let $\sigma = \tau_1 \cdots \tau_s$ be the cycle decomposition of σ with $\tau_1 = (a_1 \cdots a_l)$. Since disjoint cycles commut

$$\sigma^m = (\tau_1 \cdots \tau_s)^m = \tau_1^m \cdots \tau_s^m.$$

Since the cycles $\tau_2, ..., \tau_s$ do not contain a_1 , they all fix a_1 and so

$$\sigma^m(a_1) = (\tau_1^m \cdots \tau_s^m)(a_1) = \tau_1^m(a_1) = (a_1 \cdots a_l)^m(a_1).$$

Moreover, it was proved in class that

$$(a_1 \cdots a_l)^m (a_1) = a_i,$$

where $j \in \{1, ..., l\}$ is such that $j \equiv 1 + m \pmod{l}$. This shows that

$$\mathcal{O}(a_1) \subset \{a_1, ..., a_l\}.$$

But j will range over all integers $\{1,...,l\}$ as m ranges over all \mathbb{Z} , we see that in fact

$$\mathcal{O}(a_1) = \{a_1, ..., a_l\}.$$