Problems.

1. Consider $f(x) = \sqrt[3]{x+1}$. We know that $\sqrt[3]{8} = 2$ and $\sqrt[3]{27} = 3$. Estimate what $\sqrt[3]{15}$ is.

2. A city has population 250,000 in the year 2000 and 320,000 in the year 2010. Use these two points to estimate the population in 2005.

Proportionality

x is proportional to y means...

x is inversely proportional to y means...

Exponents and Logarithms

How does log work?

Problems.

Use the definition of logarithm to find the following.

- 1. $\log(100000000) =$
- 2. $\log(\frac{1}{100000}) =$ 3. $\log_5(25) =$

- 4. $\log_5(25) = 4$ 5. $\log_2(\frac{1}{4}) = 5$ 5. $\log_3(3) = 100$

What are the five exponent-and-logarithm rules that you have learned?

	Exponent Rules	Logarithm Rules
$\left (1) \right $	$10^a \times 10^b =$	$\log(xy) =$
(2)	$10^0 =$	$\log(1) =$
(3)	$10^{-a} =$	$\log(\frac{1}{x}) =$
(4)	$(10^a)^p =$	$\log(x^p) =$
(5)	$\frac{10^a}{10^b} =$	$\log(\frac{x}{y}) =$

Application of Logarithms

Solving equations

1.

$$3^x = 71$$

2.

Half-life

Suppose we have A_0 grams of a substance initially and we know that its half-life is K years. We can find a formula A(t) which tells us that amount of this substance after t years. What is it?

*The half-life K can have units other than years. This formula still works as long as we make t to have the same units as K.

Problems.

- 1. The half-life of element X is 50 years. If there are 80g initially
- a) How much is there after 50 years?
- b) How much is there after 100 years?
- c) How much is there after 150 years?
- d) How much is there after 1000000 years?
- e) How much is there after x half lives have passed?
- f) How much is there after t years?
- g) How much is there after 17 years?
- h) When will 50g remain?

2. There are 150g of element Y at noon. At 4 pm there are only 100g left. What is the half life of element Y?

Double-life

Suppose we have A_0 grams of a substance initially and we know that its double-life is K years. We can find a formula A(t) which tells us that amount of this substance after t years. What is it?

Compound Interest

Suppose we have M_0 dollars in the bank initially and we know the interest rate is r% compounded yearly. We can find a formula M(t) which tells us the amount of money after t years.

Problems.

1. A bank pays 3% interest compounded annually. If you put \$5000 in your account now (Feb 2012), how much money will you have

- a) in Feb 2013?
- b) in Feb 2014?
- c) in Feb 2015?
- d) t years from now?

2. Same as above. Your goal is to have half a million in your bank account. How long is it going to take?