## MATH 3A COMPUTING LIMITS

| Recall. Derivative of a function: |
|-----------------------------------|
|                                   |
|                                   |
|                                   |
|                                   |
| I. Properties of limits           |
| a) Addition and Subtraction:      |
|                                   |
|                                   |
|                                   |
|                                   |
| b) Multiplication:                |
|                                   |
|                                   |
|                                   |
| c) Division:                      |
| c) Division.                      |
|                                   |
|                                   |
|                                   |
| II. Techniques to compute limits  |
| a) Use continuity                 |
|                                   |
|                                   |
|                                   |
|                                   |

b) Factor and cancel

c) Use conjugate

## III. Practice

1. Compute the following limits.

a) 
$$\lim_{x\to 0} x^5(1+6x^2) =$$

b) 
$$\lim_{a \to 3} \frac{x-3}{x^2 - x - 6} =$$

c) 
$$\lim_{y \to -2} \left( \frac{\sqrt{y+4}}{y} + 2^y \right) =$$

d) 
$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} =$$

(Your answer will contain x.)

e) 
$$\lim_{s \to 1} \frac{1-s}{1-\sqrt{s}} =$$

e)  $\lim_{s \to 1} \frac{1-s}{1-\sqrt{s}} =$  (Hint: Use conjugate.)

2. Suppose

$$\lim_{x \to a} g(x) = -5$$
,  $\lim_{x \to a} h(x) = 2$ , and  $\lim_{x \to a} f(x) = 0$ 

 $\lim_{x\to a} g(x) = -5, \ \lim_{x\to a} h(x) = 2, \ \text{and} \ \lim_{x\to a} f(x) = 0.$  Find the following limits if they exists. If it is infinity of does not exist, write DNE.

a) 
$$\lim_{x \to a} (g(x) + h(x)) =$$

b) 
$$\lim_{x \to a} \sqrt{f(x)} =$$

c) 
$$\lim_{x \to a} \frac{g(x)}{h(x)} =$$

d) 
$$\lim_{x \to a} \frac{1}{h(x)-2} =$$

e) 
$$\lim_{x \to a} (3g(x) - \frac{1}{h(x)}) =$$

f) 
$$\lim_{x \to a} g(x)^2 h(x) =$$

3. A challenging question: What about this limit?

$$\lim_{x \to 0} (x \sin(\frac{1}{x})) =$$