MATH 3B INTEGRALS AND FUNDAMENTAL THEOREM OF CALCULUS

I. Definite Integrals

A. Basic Properties

1.
$$\int_a^a f(x)dx =$$

2.
$$\int_{a}^{b} f(x) dx =$$

3.
$$c \int_{a}^{b} f(x) dx =$$

1.
$$\int_{a}^{a} f(x)dx =$$
2. $\int_{a}^{b} f(x)dx =$
3. $c \int_{a}^{b} f(x)dx =$
4. $\int_{a}^{b} [f(x) + g(x)]dx =$
5. $\int_{a}^{b} [f(x) - g(x)]dx =$

5.
$$\int_{a}^{b} [f(x) - g(x)] dx =$$

B. Other Properties

Exercise: Draw a picture to illustrate each of the following properties.

1. For any real number c, we have $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$.

2. If $f(x) \ge 0$ on the interval [a, b], then we have $\int_a^b f(x) dx \ge 0$.

3. If $f(x) \ge g(x)$ on the interval [a, b], then we have $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.

4. If $m \leq f(x) \leq M$ on the interval [a, b], then we have $m(b - a) \leq \int_a^b f(x) dx \leq M(b - a)$.

1

2

II. Indefinite Integrals/Anti-Derivatives

Without the bounds a and b, what does the symbol $\int f(x)dx$ mean?

Exercise: Just by thinking backward, find the following indefinite integrals.

$\boxed{1. \mid \int 10 dx =}$	$\int \cos x dx =$	$11. \int x^{1/3} dx =$
$2. \mid \int 2x dx =$	$7. \int \sec^2 x dx =$	$12. \int \cos(3x) dx =$
$3. \mid \int \frac{1}{x} dx =$	$8. \int x^2 dx =$	$13. \int e^{4x} dx =$
$\boxed{4. \mid \int e^x dx =}$	$9. \int x^5 dx =$	14. $\int (5x-1)^2 dx =$
$\int \sin x dx =$	$\int \sqrt{x} dx =$	*15. $\int \cos^2(x)\sin(x)dx =$

Did you forget the constant C?

16. Suppose you know that F(1) = 2 and F'(x) = 2x. Can you find F(x)?

III. Fundamental Theorem of Calculus

A. Part 2 (c.f. Net Change Theorem)

Statement of the theorem:

$$\int_{a}^{b} f(x) =$$

Key: This gives us a much easier way to compute definite integrals (instead of using limits).

B. Part 1

Statement of the theorem: If $g(x) = \int_a^x f(t)dt$, then

Key: This says that integration and differentiation and inverse processes of each other.

Exercise:

- 1. Let $g(x) = \int_3^x \sin(t) dt$. Find g'(x). 2. Let $g(x) = \int_0^{x^2} \frac{u}{u+1} du$. Find g'(x). 3. Let $g(x) = \int_{-x}^x \sqrt{1+t^2} dt$. Find g'(x).