MATH 3C DIFF EQTS, DIRECTION FIELDS, AND ISOCLINES

I. Differential equations (DE)

Keywords: ordinary DE, partial DE, general solution, particular solution, initial condition, initial-value problem

Q: How do you tell if a given function is a solution to a differential equation or not?

Example. Is $y = e^{2t}$ a solution to y'' = 2y?

Solving an ODE graphically

II. Direction fields

Keywords: equilibrium solution, stable, unstable, semistable)

Q: How do you draw them? Why are they useful?

Examples.

1) y' = t

2) y' = y

Equilibrium solution:

Stable? Unstable? Semistable?

III. Isoclines

Q: How do you draw them? Why are they useful?

Example. y' = y + t

IV. Practice

- 1. a) Draw the direction field for $y' = y^2$.
- b) Are there any equilibrium solutions? If yes, are they stable, unstable, or semistable?
- 2. Draw the isoclines for y' = -y for c = 0, 1, and 2.
- 3. a) Draw the direction field for $y' = \frac{1}{t}$. b) Are there any equilibrium solutions? If yes, are they stable, unstable, or semistable?
- 4. Draw the isoclines for y' = 2t y for c = 0, 1, and 2.
- 5. a) Draw the direction field for $y' = y^2 + t$.
- b) Are there any equilibrium solutions? If yes, are they stable, unstable, or semistable?
- 6. Draw the isoclines for $y' = y^2 + 2t^2$ for c = 0, 1, and 2.