MATH 3C MATRIX OPERATIONS & SYSTEM OF EQUATIONS

I. Vocabulary

- 1. Order of a matrix
- 2. Column/row vector
- 3. Zero matrix
- 4. Diagonal matrix
- 5. Identity matrix
- 6. Scalar product
- 7. Orthogonal
- 8. Length of a vector
- 9. Augmented matrix
- 10. RREF
- 11. Inconsistent system
- 12. Consisten system
- 13. Underdetermined system
- 14. Rank of a matrix

II. System of equations

Step1: Write the system of equations in its augmented matrix form.

Step2: Use Gauss-Jordan reduction to reduce the matrix to RREF.

Step3: Write down the solution based on the RREF (if the system is consistent).

Example.

x + y + 2z	=	1
2x - y + z	=	2
4x + y + 5z	=	4

1.

x + 2y	=	1
2x - y	=	0
3x + 2y	=	1

2.

$$\begin{aligned} x + y + z &= 0 \\ y + z &= 1 \end{aligned}$$

III. True/false

A. Matrix Operations and orders

- 1. An $m \times n$ matrix has m columns and n rows.
- 2. Addition of two matrices is only possible if they have the same order.
- 3. Multiplication of two matrices is only possible they have the same order.
- 4. Multiplying a matrix by a scalar does not change its order.

5. Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. The product AB is well-defined and has order $m \times p$.

6. Let A and B be two $n \times n$ matrices. It is always true that AB = BA.

- 7. Let I_n be the $n \times n$ identity matrix. The matrix cI_n is diagonal for any real number c.
- 8. For any matrix A, the identity $(A^T)^T = A$ holds.
- 9. Let A be a square matrix. The order of A and A^T are the same.
- 10. Let \mathbf{x} and \mathbf{y} be two vectors. The scalar product $\mathbf{x} \cdot \mathbf{y}$ is another vector.
- 11. The vectors $\mathbf{x} = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$ are orthogonal in \mathbb{R}^3 .
- 12. The vector $\mathbf{x} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 & -1 \end{bmatrix}$ is a unit vector in \mathbb{R}^3 .
- 13. A symmetric matrix must be square.

B. System of equations

 14. The matrix
 $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is in RREF.

 15. The matrix
 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is in RREF.

 16. The rank of the matrix
 $\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ is 2.

 17. Let [A | b] represents consistent system of or

17. Let $[\mathbf{A}|\mathbf{b}]$ represents consistent system of equations. If the rank of A is equal to the number of variables, then the system has a unique solution.

18. A system of three equations and three unknowns always has a unique solution.

19. A consistent system with more variables than equations must have infinitely many solutons.

20. A homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$ is always consistent.