I. Inverse of a square matrix

a) Inverse of a 2×2 matrix.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} =$$

b) Inverse of a 3×3 matrix.

$$\begin{bmatrix} 3 & 3 & -6 \\ 0 & 1 & 1 \\ 0 & -2 & 1 \end{bmatrix}^{-1} =$$

c) Solving a linear system.

$$3x + 3y - 6z = 1$$
$$y + z = -1$$
$$-2y + z = 0$$

Check your understanding.

Let **A** be an $n \times n$ matrix.

	\mathbf{A} is invertible			\mathbf{A} is not invertible		
A is row equivalent to I_n		true	false		true	false
$\mathbf{A}^{\mathbf{T}}$ is invertible		true	false		true	false
the rank r of \mathbf{A}		r < n	r = n		r < n	r = n
solutions to $Ax = 0$	none	unique	infinitely many	none	unique	infinitely many
solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$	none	unique	infinitely many	none	unique	infinitely many

II. Determinant

a) Determinant of a 2×2 matrix.

 $\begin{vmatrix} a & b \\ c & d \end{vmatrix} =$

- b) Row operations and Determinants.
- i. $R_i \leftrightarrow R_j$ (interchanging two rows)
- ii. $R_i \to kR_i$ (multiplying a row by a constant k)
- iii. $R_i \rightarrow R_i + kR_j$ (adding a multiple of a row to another)

c) Determinant of a 3×3 matrix.

$$\begin{vmatrix} 3 & 3 & -6 \\ 0 & 1 & 1 \\ 0 & -2 & 1 \end{vmatrix} =$$

d) Invertibility and Determinant.

e) A very important property of determinant.

Check your understanding.

- 1. Let A be an $n \times n$ matrix. Determine if the following statements are true or false.
- a) If **A** has a row of zero, then $|\mathbf{A}| = 0$.
- b) If **A** has two identical rows, then **A** is not invertible.
- c) If $|\mathbf{A}| \neq 0$ then $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution for all \mathbf{b} in \mathbb{R}^n .

2. Let **A** and **B** be two $n \times n$ matrices. Use the property in e) to prove that a) $|\mathbf{AB}| = |\mathbf{BA}|$

b) $|\mathbf{A}^{-1}| = \frac{1}{|\mathbf{A}|}$ (provided that \mathbf{A} is invertible)

c) $|\mathbf{B}\mathbf{A}\mathbf{B}^{-1}| = |\mathbf{A}|$ (provided that **B** is invertible)

III. Cramer's rule

Statement. Let \mathbf{A} be an $n \times n$ matrix with $|\mathbf{A}| \neq 0$. Then \mathbf{A} is an invertible matrix so the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution for any \mathbf{b} in \mathbb{R}^n . Denote by \mathbf{A}_i the matrix obtained from \mathbf{A} by replacing its *i*th column with the column vector \mathbf{b} . Cramer's rule says that the *i*th component of the unique solution of the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is given by $x_i = |\mathbf{A}_i|/|\mathbf{A}|$.

Example. This is the system we considered above in part I.

$$3x + 3y - 6z = 1$$
$$y + z = -1$$
$$-2y + z = 0.$$

In matrix form, this is represented by

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 3 & 3 & -6 \\ 0 & 1 & 1 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \mathbf{b}$$

We saw in part II that $|\mathbf{A}| = 9$. Now, replacing the *i*th column with **b**, we have

$$\mathbf{A_1} = \begin{bmatrix} 1 & 3 & -6 \\ -1 & 1 & 1 \\ 0 & -2 & 1 \end{bmatrix}, \ \mathbf{A_2} = \begin{bmatrix} 3 & 1 & -6 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \ \mathbf{A_3} = \begin{bmatrix} 3 & 3 & 1 \\ 0 & 1 & -1 \\ 0 & -2 & 0 \end{bmatrix}.$$

You should check that $|\mathbf{A_1}| = -6$, $|\mathbf{A_2}| = -3$, and $|\mathbf{A_3}| = -6$. By Cramer's rule, the solution is

$$x = \frac{|\mathbf{A}_1|}{|\mathbf{A}|} = \frac{-6}{9} = \frac{-2}{3}, \ y = \frac{|\mathbf{A}_2|}{|\mathbf{A}|} = \frac{-3}{9} = \frac{-1}{3}, \ z = \frac{|\mathbf{A}_3|}{|\mathbf{A}|} = \frac{-6}{9} = \frac{-2}{3}.$$

Hence, $(x, y, z) = (\frac{-2}{3}, \frac{-1}{3}, \frac{-2}{3})$, which agrees with what we got earlier by using the inverse of **A**.