MATH 3C VECTOR SPACES, SUBSPACES, BASIS, AND DIMENSION

I. Vector Spaces

\diamond Some familiar vector spaces \diamond

- 1. Euclidean spaces: \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^n
- 2. Polynomial spaces: \mathbb{P} (all polynomials), \mathbb{P}_n (all polynomials of degree $\leq n$)
- 3. Matrix spaces: \mathbb{M}_{mn} (all $m \times n$ matrices)
- 4. Function spaces: C(I) (all continuous functions on the interval I)

II. Subspaces

Definition. A subspace of a vector space \mathbb{V} is a subset \mathbb{W} that is itself a vector space.

Vector Subspace Theorem. A nonempty subset \mathbb{W} of a vector space \mathbb{V} is a subspace of \mathbb{V} if 1.

2.

How to determine if a subset is a subspace or not:

1. (cf. HW10 #12) $\mathbb{V} = \mathbb{P}_3$ and $\mathbb{W} = \{p(t) | p(0) = 0\}$

2. (HW10 #3) $\mathbb{V} = \mathbb{M}_{22}$ and $\mathbb{W} = \{\mathbf{A} | \mathbf{A} \text{ is diagonal}\}$

3. (HW10 #6) $\mathbb{V} = \mathbb{R}$ and $\mathbb{W} = \mathbb{Z}$

III. Basis and dimension

Definition. The set $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is a **basis** for a vector space \mathbb{V} if 1.

2.

Definition. The **dimension** of \mathbb{V} is defined to be

$\diamond {\bf Standard \ basis \ for \ some \ familiar \ spaces} \diamond$

1. \mathbb{R}^3

2. \mathbb{M}_{23}

3. \mathbb{P}_2

How to determine if a given set of vectors forms a basis or not:

1. Check the number of vectors in the set.

a) (cf. HW10 #16)
$$\mathbb{V} = \mathbb{M}_{22}$$

$$S = \left\{ \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix} \right\}$$
b) $\mathbb{V} = \mathbb{R}^3$

$$S = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 4 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \end{bmatrix}, \begin{bmatrix} -5 \\ 3 \end{bmatrix} \right\}$$

2. Check if the vectors are linear independent.

a) (cf. HW10 #17)
$$\mathbb{V} = \mathbb{R}^3$$

$$S = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\-1 \end{bmatrix}, \begin{bmatrix} -1\\1\\3 \end{bmatrix} \right\}$$

b) (cf. HW10 #22)
$$\mathbb{V} = \mathbb{P}_2$$

$$S = \{3, 2t - 1, t^2 + t + 1\}$$