MATH 4A FALL 2015 MIDTERM 2 REVIEW PART I

Name:	Section:	8AM	$5\mathrm{PM}$	$6 \mathrm{PM}$	7PM
*This review worksheet is due at the beginning of section	next Monday	(Nov 2).	Each answer	is worth 1	point.
You need 11 points (out of 17 possible points) to receive 2	1% on your dis	scussion s	section grade.		

Linear Transformation

1. Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be defined by $T(\mathbf{x}) = A\mathbf{x}$, where A is the matrix below.

 $A = \begin{bmatrix} 2 & -1 & 0 & 3 \\ 1 & 1 & 2 & -1 \end{bmatrix}$ a) What is *n*? b) What is *m*?

c) Determine whether T is (i) onto and (ii) one-to-one. Justify your answers.

2. Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be a linear transformation such that

$$T\left(\begin{bmatrix}3\\0\\0\end{bmatrix}\right) = \begin{bmatrix}2\\1\end{bmatrix} \qquad T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}-1\\3\end{bmatrix} \qquad T\left(\begin{bmatrix}0\\-1\\1\end{bmatrix}\right) = \begin{bmatrix}0\\5\end{bmatrix}$$

a) Find the matrix of T.

b) Compute T(1, 1, 1).

3. Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear	transformatio	on.	
a) If $m > n$ then T must be	(i) onto	(ii) one-to-one	(circle all possibilities).
b) If $m < n$ then T must be	(i) onto	(ii) one-to-one	(circle all possibilities).
c) If $m = n$ then T must be	(i) onto	(ii) one-to-one	(circle all possibilities).

d) If m = n and T is onto, then T is also one-to-one. True/False? Explain why it is true or give a counterexample.

Matrix Multiplication

1. Compute the following. Show your work.

$$\begin{bmatrix} 0 & 4 \\ 2 & -1 \\ 1 & 0 \end{bmatrix}^{T} \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} =$$

2. a) Compute (1 point for all three answers)

 $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}^2 = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}^3 = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}^4 =$

b) Do you notice any pattern? If yes, write down

$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}^{1000} =$$

3. Let I_2 and $\mathbf{0}_2$ be the 2×2 identity and zero matrices, respectively.

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mathbf{0}_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Give examples of 2×2 matrices A and B satisfying the given property. Show that your examples really work! [The following examples show that multiplication of matrices is very different from that of real numbers!!] a) $AB \neq BA$. [But for $a, b \in \mathbb{R}$, we have ab = ba.]

b) $AB = \mathbf{0}_2$ but neither A nor B is equal to $\mathbf{0}_2$. [But for $a, b \in \mathbb{R}$, we have ab = 0 if and only if a = 0 or b = 0.]

c) $A^2 = I_2$ but $A \neq \pm I_2$. [But for $a, b \in \mathbb{R}$, we have $a^2 = 1$ if and only if $a = \pm 1$.]