MATH 4A FALL 2015 WORKSHEET 4

Name:

Section:

8AM

5PM

6PM

7PM

*Each answer is worth 1 point. You need 6 points to get 1% on your discussion section grade.

1. Complete the definition: A set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of vectors in \mathbb{R}^n is said be linearly independent if

2. True of False. No justification is required.

a) The columns of a matrix A are linearly independent if and only if the equation $A\mathbf{x} = \mathbf{0}$ has a unique solution.

True False

b) The columns of a 3×5 matrix are always linearly depedent.

True False

c) The columns of a 5×3 matrix are always linearly indepedent.

True False

3. Find the value(s) of h for which the vectors below are linearly independent.

$$\begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} -1 \\ 7 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 \\ 8 \\ h \end{pmatrix}$$

4. Let A be a 3×3 matrix whose columns are linearly independent.

a) What is the reduced echelon form of A?

b) Let **b** be a vector in \mathbb{R}^3 . The equation $A\mathbf{x} = \mathbf{b}$ has (circle all possibilities)

- (i) no solution
- (ii) a unique solution
- (iii) infinitely many solutions

- 5. Let A be a 3×3 matrix and let **b** be a vector in \mathbb{R}^3 .
- a) If there exist two different vectors \mathbf{x}_1 and \mathbf{x}_2 in \mathbb{R}^3 such that $A\mathbf{x}_1 = \mathbf{b}$ and $A\mathbf{x}_2 = \mathbf{b}$, then the columns of A are (circle all possibilities)
 - (i) linearly indepedent
- (ii) linearly dependent
- b) If the equation $A\mathbf{x} = \mathbf{b}$ has no solution, then the columns of A are (circle all possibilities)
 - (i) linearly indepedent
- (ii) linearly dependent
- 6. The following statements are all false. Explain why or give a counterexample.
- a) A set $\{v_1\}$ containing only one vector is always linearly indepedent.
- b) If $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly dependent, then \mathbf{v}_2 is a scalar multiple of \mathbf{v}_1 .
- c) If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent, then $\mathbf{v}_3 \in \mathrm{Span}(\mathbf{v}_1, \mathbf{v}_2)$.
- d) If $A\mathbf{x} = \mathbf{0}$ has the trivial solution, then the columns of A are linearly indepedent.
- 7. This problem will not be graded.

$$A = \begin{pmatrix} 1 & 3 & 2 & -6 & 0 & 0 \\ 0 & 0 & 1 & -7 & 4 & -8 \\ 0 & 0 & 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad \mathbf{x}_0 = \begin{pmatrix} 2 \\ -1 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} -7 \\ -3 \\ 2 \\ 0 \end{pmatrix}$$

- a) Describe all solutions of $A\mathbf{x} = \mathbf{0}$ in parametric vector form.
- b) Verify that $A\mathbf{x}_0 = \mathbf{b}$.
- c) Describe all solutions of $A\mathbf{x} = \mathbf{b}$ in parametric vector form. [Hint: Use parts (a) and (b).]
- 8. This problem will not be graded. Determine if the sets of vectors below span \mathbb{R}^3 .

a)
$$\left\{ \begin{pmatrix} 1\\4\\-2 \end{pmatrix}, \begin{pmatrix} 3\\0\\-5 \end{pmatrix} \right\}$$
 b) $\left\{ \begin{pmatrix} 3\\4\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \begin{pmatrix} -1\\6\\0 \end{pmatrix} \right\}$ c) $\left\{ \begin{pmatrix} 0\\1\\2 \end{pmatrix}, \begin{pmatrix} -1\\4\\3 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 0\\4\\1 \end{pmatrix} \right\}$

9. This problem will not be graded. Determine if the set of vectors below is linearly independent.

$$\left\{ \begin{pmatrix} -1\\0\\2 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\3 \end{pmatrix} \right\}$$

If not, find a non-trivial relation among the vectors (i.e. write **0** as a linear combination of the vectors so that at least one of the weights is non-zero).