Name:Section:8AM5PM6PM7PM*The first three problems are worth 10 points each. From Problem 4 and on, each answer is worth 1 point. Youneed 35 points to get 1% on your discussion section grade.

1. Complete the definition: A set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ of vectors in \mathbb{R}^n is said be *linearly independent* if

2. Complete the definition: A set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ of vectors in \mathbb{R}^n is said be *linearly dependent* if

3. Complete the definition: A linear transformation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is

The domain of T is and the codomain of T is

Every matrix gives rise to a linear transformation $\mathbb{R}^n \longrightarrow \mathbb{R}^m$. Example. The matrix A below defines a linear transformation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ by $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix}$$

In order for $A\mathbf{x}$ to make sense, the vector \mathbf{x} must have three entries. This means that the domain of T is \mathbb{R}^3 . Moreover, given a vector $\mathbf{x} \in \mathbb{R}^3$, we have

$$T\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\right) = A = \begin{bmatrix}2 & 1 & 0\\0 & -3 & 1\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} = x_1\begin{bmatrix}2\\0\end{bmatrix} + x_2\begin{bmatrix}1\\-3\end{bmatrix} + x_3\begin{bmatrix}0\\1\end{bmatrix}.$$

So $T(\mathbf{x})$ is just a linear combination of the columns of A. This means that the codomain of T is \mathbb{R}^2 . 4. Let T be the linear transformation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ defined by the matrix A below.

$$A = \begin{bmatrix} 2 & 0 & -1 & 3 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 5 \end{bmatrix} \qquad \mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ -1 \end{bmatrix}$$

٦

a) What is n?

b) What is m?

c) Compute the following or indicate that it does not make sense.

(i) $T(\mathbf{u})$ (ii) $T(\mathbf{v})$

Every linear transformation $\mathbb{R}^n \longrightarrow \mathbb{R}^m$ is given by a matrix.

Example. Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ be the linear transformation defined by $T(x_1, x_2) = (x_1 + x_2, 3x_1 - x_2, 4x_1)$. Note that we can rewrite this as

$$T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}x_1+x_2\\3x_1-x_2\\4x_1\end{bmatrix} = x_1\begin{bmatrix}1\\3\\4\end{bmatrix} + x_2\begin{bmatrix}1\\-1\\0\end{bmatrix} = \begin{bmatrix}1&1\\3&-1\\4&0\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}.$$

This means that T is represented by the matrix

$$A = \begin{bmatrix} 1 & 1\\ 3 & -1\\ 4 & 0 \end{bmatrix}$$

Also, observe that the first column of A is T(1,0) and the second column of A is T(0,1). In general, the columns of the matrix A associated to a linear transformation T is just the images the standard basis vectors under T

5. Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the linear transformation defined by $T(x_1, x_2, x_3) = (x_1 - 2x_2, x_2 + x_3, x_1 - 3x_3)$. Find the matrix associated to T.

6. Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ be a linear transformation such that T(2,0) = (0,2,4) and T(0,1) = (-1,4,5). b) Find T(3, 2).

a) Find the matrix associated to T.

The concept of "onto" and "one-to-one" Consider a map (not necessarily linear) $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$.

• T is onto if the equation $T(\mathbf{x}) = \mathbf{b}$ has at least one solution for every vector \mathbf{b} in \mathbb{R}^m .

• T is one-to-one if the equation $T(\mathbf{x}) = \mathbf{b}$ has at most one solution for every vector \mathbf{b} in \mathbb{R}^m .

Example. Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ be a linear transformation whose matrix A is equivalent to the matrix

Гı	-1	จไ	which is in echelon form. We see that for some vectors $\mathbf{b} \in \mathbb{R}^4$, the augmented matrix $[A \mid b]$
	$^{-1}$		row reduces to a matrix containing a row that looks like $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix} * \end{bmatrix}$ with $* \neq 0$. This means
		1	that $A\mathbf{x} = \mathbf{b}$ has no solution for these b and so \overline{A} is not onto. On the other hand, for all
	0	6	vectors $\mathbf{b} \in \mathbb{R}^4$, the augmented matrix $[A \mid b]$ has no free variable. This means that $A\mathbf{x} = \mathbf{b}$
0	0	0	has at most one solution for any b and so A is one-to-one.

7. Determine whether the linear transformation T in Problem 5 is (i) onto and (ii) one-to-one. Show your work.