Name:

1. Let $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be defined by

$$T(x_1, x_2, x_3) = (x_1 + 2x_2, x_1 - 4x_2).$$

Write down the standard matrix of T.

2. Consider the matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -2 & -4 \\ 1 & 3 & 5 \\ 4 & 0 & 1 \end{bmatrix}$$

and let T be the linear transformation defined by $T(\mathbf{x}) = A\mathbf{x}$. a) Find the domain and codomain of T.

$$Domain(T) =$$
$$Codomain(T) =$$

b) Is T onto?

3. Let $T : \mathbb{R}^5 \longrightarrow \mathbb{R}^2$ be a linear transformation.

a) T cannot be one-to-one.

False

b) T must be onto.

True	
------	--

False

4. Let $T : \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ be a linear transformation and A its standard matrix.

a) If the columns of A are linearly independent, then T is onto.

	Score:	/10
True	False	
c) If T is one-to-one, then $T(\mathbf{x}) = \mathbf{b}$	has a unique solution for a	all \mathbf{b} in \mathbb{R}^4 .
True	False	
b) If T is onto, then T is also one-to	o-one.	
True	False	