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Homework 1

5.1.7 (a) If matrices A,B both represent T under different bases, then for some invertible matrix Q we
have B = QAQ−1. Then

det(B) = det(QAQ−1) = det(Q) · det(A) · det(Q−1),

since the determinant for matrices is multiplicative. Furthermore det(Q−1) = (det(Q))−1, so

det(B) = det(A),

as desired.

(b) We know that T is invertible if and only if its matrix is invertible with respect to any basis;
we also know that a matrix is invertible if and only if its determinant is zero. If A is a matrix
representing T in some basis, then T is invertible if and only if A is invertible if and only if
det(T ) = det(A) 6= 0.

(c) If T has matrix A under some basis, then T−1 has matrix A−1 under the same basis. Thus

det(T−1) = det(A−1) = det(A)−1 = det(T )−1.

(d) If operators T,U are represented by matrices A,B (respectively) in some basis, then the matrix
for TU is AB. From this we have

det(TU) = det(AB) = det(A) det(B) = det(T ) det(U),

since the determinant for matrices is multiplicative.

(e) Given any ordered basis β = {v1, . . . , vn}, the identity map IV maps each vi to itself. That is,
[IV ]β = I. Matrix subtraction is defined so that [T−λIV ]β = [T ]β−λ[IV ]β = [T ]β−λI. Therefore

det(T − λIV ) = det([T − λIV ]β) = det([T ]β − λI).

Homework 2

5.1.8 Let T : V → V be a linear operator.

(a) (⇒) Assume that T is invertible and Tv = 0 for some vector v. Multiplying by T−1 gives v = 0,
so the equation Tv = 0v has only trivial solutions; that is, zero is not an eigenvalue.

(⇐) Suppose that the equation Tv = 0 has only the trivial solution v = 0. That is, ker(T ) = {0}.
Since V is finite–dimensional, this implies T is invertible.

(b) Suppose that T is invertible and that Tv = λv for some λ 6= 0 and v 6= 0. Multiplying by T−1

and λ−1 gives T−1v = λ−1v. Multiplying by T and λ reverses the argument.



5.1.14 We know that det(A) = det(At) for all matrices A; furthermore (λI)t = λI. Since the transpose
operation is additive we have

det(A− λI) = det((A− λI)t) = det(At − λI).

5.1.15a If Tv = λv for some nonzero v, then T 2v = T (Tv) = λ(Tv) = λ2v. Similarly, Tnv = λTn−1v for each
n; an inductive argument shows that Tnv = λnv for all integers n ≥ 0.

5.2.1 (a) False. For example, the identity map on R3 has only the eigenvalue 1.

(b) False. For example, for the identity map on R2 the standard basis vectors e1 and e2 are eigenvec-
tors with eigenvalue 1, though {e1, e2} is linearly independent.

(c) False. We never consider 0 to be an eigenvector, though it must be in any eigenspace.

(d) True. If v satifies Tv = λiv for i = 1, 2, then (λ1 − λ2)v = 0; if λ1 6= λ2, then v = 0.

(e) True.

(f) False. The eigenvalues might not exist in the field. For example, the 90◦ rotation of R2 has no
eigenvalues in R. It is not diagonalizable over R, even though “every eigenvalue λ has multiplicity
equal to dim(Eλ),” a statement which holds vacuously.

(g) True.

(h) True.

(i) False. For example take three distinct lines through the origin in R2. Each pair has a trivial
intersection, but the sum of any two is the entire plane (which intersects the third line nontrivially).

5.2.20 Throughout the following, V is a finite–dimensional vector space with subspaces W1, . . . ,Wk satisfying

V =

k∑
i=1

Wi.

Note that with no further assumptions we have

dim(V ) ≤
k∑
i=1

dim(Wi),

which can be proved with induction and the readily–verified result

dim(W1 +W2) ≤ dim(W1) + dim(W2).

Let’s give a brief proof of the above inequality. Given bases β = {v1, . . . , vm} and γ = {w1, . . . , wn}
for W1 and W2 respectively, we claim that β ∪ γ spans W1 + W2. Indeed, given an arbitrary vector
x+ y ∈W1 +W2 with x ∈W1 and y ∈W2, we find scalars so that x =

∑
civi and y =

∑
diwi. Then

x+ y = (c1v1 + · · ·+ cmvm) + (d1w1 + · · ·+ dnwn) ∈ span(β ∪ γ).

Thus the size of a basis for W1 +W2 must be at most the size of β ∪ γ, and we have

dim(W1 +W2) ≤ |β ∪ γ| ≤ |β|+ |γ| = dim(W1) + dim(W2).

(⇒) Assume that V = W1⊕ · · · ⊕Wk. By theorem 5.10d, if we take an ordered basis βi for each space
Wi, then β = β1 ∪ · · · ∪ βk is a basis for V . This gives

|β| = dim(V ) ≤
k∑
i=1

dim(Wi) =

k∑
i=1

|βi|.



Thus it suffices to prove that |β| =
∑
|βi|. Suppose that v ∈ β1 ∩ β2 and note that we can write the

zero vector nontrivially as

0 = v + (−v) + 0 + · · ·+ 0 ∈W1 +W2 + · · ·+Wk.

This contradicts our assumption that the sum
∑
Wi is direct. Hence β1 ∩ β2 = ∅; the same argument

shows that βi ∩ βj = ∅ for any i 6= j. Since the sets are pairwise disjoint, we have |β| =
∑
|βi|, as

desired.

(⇐) Now we assume that

dim(V ) =

k∑
i=1

dim(Wi).

For each Wi find an ordered basis βi and consider the set β = β1 ∪ · · · ∪ βk; we do not know a priori
that the bases βi are pairwise disjoint, so we only have an inequality:

|β| ≤
k∑
i=1

|βi| =
k∑
i=1

dim(Wi). (1)

We claim that β spans V . Indeed, given x ∈ V =
∑
Wi we can write

x = w1 + · · ·+ wk

with wi ∈ Wi for each i. Each wi can be written as a linear combination of the elements of βi, so x
can be written as a linear combination of the elements of β — we could use explicit notation for this
argument, but it would greatly clutter the simple idea at work. Since β spans V , it must have size at
least dimV ; combining this with equation (1) gives

dim(V ) ≤ |β| ≤
k∑
i=1

dim(Wi) = dim(V ).

We deduce that |β| = dim(V ), and since β spans V we further conclude that β is a basis of V . By
theorem 5.10d, V is the direct sum of the spaces Wi.

Homework 3

5.4.1 (a) False. Any operator T : V → V has T (V ) ⊆ V .

(b) True. The roots of the characteristic polynomial are eigenvalues. An eigenvalue for TW is an
eigenvalue for T , so the roots of the characteristic polynomial of TW are among those of the
polynomial for T .

(c) False. We could have, for example, v′ = 2v.

(d) False. The T–cyclic subspace generated by v might not include v in its span. For example, take
T = 0 on R2 and any vector v 6= 0. The T–cyclic subspace generated by v is the span of v, but
the T–cyclic subspace of Tv is trivial.

(e) True. This follows from the Cayley–Hamilton theorem.

(f) True. The matrix on displayed on page 316 has characteristic polynomial (−1)n(a0 + a1t+ · · ·+
ak−1t

k−1 + tk).

(g) True. Take a basis βi of each T–invariant subspace Wi and consider the basis ∪iβi for the whole
space.

5.4.3 (a) Since T : V → V is linear, clearly T ({0}) = {0} and T (V ) ⊆ V .



(b) Given x ∈ N(T ) we have Tx = 0 ∈ N(T ). Given y ∈ R(T ) we have Ty ∈ R(T ) by definition of
the range.

(c) Given v ∈ Eλ, we have Tv = λv ∈ Eλ.

5.4.18 (a) Given any x ∈W , we can find scalars c0, . . . , ck so that x = c0v + c1Tv + · · ·+ ckT
kv. Then

Tx = c0Tv + c1T
2v + · · ·+ ckT

k+1v,

which is also a linear combination of vectors of the form T jv. Hence Tx ∈W .

(b) Let S be a T–invariant subspace of V containing v. An inductive argument shows that every iterate
T jv is in S; indeed, T 0v = v ∈ S and whenever T jv ∈ S we must also have T j+1v = T (T jv) ∈ S
by virtue of T–invariance. Since S is a space, it must contain the span of the iterates T jv, which
is precisely the space W .

5.4.21 Let V be a two–dimensional space and T : V → V . There are two possibilities that can occur: either
{x, Tx} is linearly independent for some vector x ∈ V , or {x, Tx} is always linearly dependent. In
the former situation we’d have that V is the T–cyclic space generated by x, so we’d be done. Hence
we assume that {x, Tx} is linearly dependent for every vector x ∈ V . We will show in this case that
T = cI for some scalar c; that is, for some fixed scalar c every vector x ∈ V satisfies Tx = cx. This is
clearly true for x = 0, so from here on we only consider nonzero vectors x.

Given a nonzero vector x ∈ V , the linear dependence of the set {x, Tx} means we can find scalars c1
and c2 — not both zero — so that

c1x+ c2Tx = 0.

If c2 = 0 then c1 6= 0 and we must have x = 0. Since we wanted to exclude this case, we cannot have
c2 = 0. Dividing by c2, we see that

Tx = −(c1/c2)x.

Rewriting −c1/c2 = c, we find that every vector x ∈ V satisfies an eigenvalue equation Tx = cx. We
do not yet know, however, that the same scalar c works for all vectors.

Consider nonzero vectors x, y ∈ V and find scalars a, b so that Tx = ax and Ty = by. If we show
that a = b, then we’re done. To this end, we can assume that x and y are not scalar multiples of each
other; that is, assume that {x, y} is linearly independent. The vector x+ y also satisfies an eigenvalue
equation of the form T (x+ y) = c(x+ y), but linearity yields

c(x+ y) = T (x+ y) = Tx+ Ty = ax+ by,

so that (c− a)x+ (c− b)y = 0. The linear independence of {x, y} implies that a = b, as desired.

6.1.10 Assuming that x and y are orthogonal vectors in an inner product space V , we have

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉 = 〈x, x〉+ 〈y, y〉 = ‖x‖2 + ‖y‖2.

The standard inner product in R2 yields the Pythagorean theorem.

6.1.17 Let T be a linear operator on an inner product space V satisfying ‖Tx‖ = ‖x‖ for all x ∈ V (such an
operator is typically called an isometry). If x ∈ V is chosen so that Tx = 0, then ‖x‖ = ‖Tx‖ = 0, so
x = 0 as well. That is, the null space of T is trivial, so T is injective.

Homework 4

6.2.6 Given a vector x /∈W we can use theorem 6.6 to write x = w+ z, with w ∈W and z ∈W⊥. If z were
zero then we would have x = w ∈W , so z 6= 0. Notice that z ∈W⊥ and

〈x, z〉 = 〈w + z, z〉 = 〈w, z〉+ 〈z, z〉 = 0 + ‖z‖2 6= 0.



6.2.11 Given i, j ∈ {1, 2, . . . , n} the component formula for matrix multiplication gives

(AA∗)ij =

n∑
k=1

Aik(A∗)kj =

n∑
k=1

AikAjk.

This last expression is the inner product of rows i and j; thus if the rows of AA∗ are orthonormal, we
have (AA∗)ij = 0 when i 6= j and (AA∗)ii = 1. That is, AA∗ = I. Conversely if AA∗ = I then the
rows are orthonormal by the same argument in reverse.

6.2.13 (a) Assume that S0 ⊆ S and let y ∈ S⊥. Given an arbitrary x ∈ S0 we have x ∈ S, so 〈x, y〉 = 0.
Thus y ∈ S⊥0 and we conclude S⊥ ⊆ S⊥0 .

(b) Given x ∈ S note that x is orthogonal to every element of S⊥. But then x ∈ (S⊥)⊥. Since the
orthogonal complement of any set is a space, this implies span(S) ⊆ (S⊥)⊥.

(c) It remains to show that (W⊥)⊥ ⊆W . Suppose that x /∈W ; by problem 6.2.6 there exists y ∈W⊥
with 〈x, y〉 6= 0. That is, x is not orthogonal to some element of W⊥ and x /∈ (W⊥)⊥.

(d) By theorem 6.6 any vector in V can be written as a sum of the form w + z, with w ∈ W and
z ∈W⊥. Hence V = W +W⊥. Suppose that y ∈W ∩W⊥. Since y ∈W⊥, it must be orthogonal
to every element of W ; in particular 〈y, y〉 = 0. This implies y = 0, so W ∩W⊥ = {0}. We
conclude that V = W ⊕W⊥.

6.3.7 Consider R2 with the standard inner product and standard basis {e1, e2}. Define the linear operator
T : R2 → R2 by T (e1) = 0 and T (e2) = e1. Notice that e2 /∈ N(T ); we’ll show that e2 ∈ N(T ∗). We
compute 〈e1, T ∗e2〉 = 〈Te1, e2〉 = 0 and 〈e2, T ∗e2〉 = 〈Te2, e2〉 = 〈e1, e2〉 = 0. Since T ∗e2 is orthogonal
to both vectors in the basis, T ∗e2 = 0. Thus N(T ) 6= N(T ∗).

6.3.9 Let x ∈ V be arbitrary; we want to show that T ∗x− Tx = 0. Since V = W ⊕W⊥ by assumption, we
can write T ∗x− Tx = w + z with w ∈W and z ∈W⊥. Note that

‖T ∗x− Tx‖2 = 〈T ∗x− Tx, T ∗x− Tx〉 = 〈T ∗x− Tx,w〉+ 〈T ∗x− Tx, z〉,

so we need only show that each inner product on the right vanishes. For the first product, we make
two observations: w ∈W implies Tw = w and x− Tx ∈W⊥. With these in mind we have

〈T ∗x− Tx,w〉 = 〈T ∗x,w〉 − 〈Tx,w〉 = 〈x, Tw〉 − 〈Tx,w〉 = 〈x,w〉 − 〈Tx,w〉 = 〈x− Tx,w〉 = 0.

For the second product, note that since z ∈W⊥ we have both Tz = 0 and 〈Tx, z〉 = 0. This gives

〈T ∗x− Tx, z〉 = 〈T ∗x, z〉 − 〈Tx, z〉 = 〈x, Tz〉 − 0 = 0.

We conclude that T ∗x− Tx = 0; as x was arbitrary, T = T ∗.

6.3.12 (a) Let x ∈ R(T ∗)⊥. Then for any vector y ∈ V we have 〈x, T ∗y〉 = 0. Choosing y = Tx gives

0 = 〈x, T ∗Tx〉 = 〈Tx, Tx〉 = ‖Tx‖2,

so Tx = 0. That is, x ∈ N(T ) and R(T ∗)⊥ ⊆ N(T ).

Now suppose that x ∈ N(T ) and T ∗y ∈ R(T ∗) is arbitrary. Then

〈x, T ∗y〉 = 〈Tx, y〉 = 0,

so x ∈ R(T ∗)⊥. We conclude that N(T ) ⊆ R(T ∗)⊥, whence the spaces are equal.

(b) From exercise 6.2.13 we know that in a finite–dimensional space, (W⊥)⊥ = W for any subspace
W . Using the previous part gives

N(T )⊥ = (R(T ∗)⊥)⊥ = R(T ∗),

as desired.



Homework 5

6.4.1 (a) True.

(b) False. Consider the map T : R2 → R2 with T (e1) = 0 and T (e2) = e1. You can show that
T ∗(e1) = e2 and T (e2) = 0. That is, e1 is an eigenvector of T with eigenvalue 0, but not for T ∗.

(c) False. This only holds for orthonormal bases β.

(d) True.

(e) True.

(f) True.

(g) False; if the underlying field is real, self–adjointness is needed.

(h) True.

6.4.7 (a) Let u, v ∈W . Then
〈TWu, v〉W = 〈Tu, v〉 = 〈u, Tv〉 = 〈u, TW v〉W .

Hence TW is self–adjoint.

(b) Let v ∈W⊥. Given u ∈W we have

〈T ∗v, u〉 = 〈v, Tu〉 = 0,

since Tu ∈W . Thus T ∗v ∈W⊥ and W⊥ is T ∗–invariant.

(c) Let u, v ∈W . Then

〈u, (TW )∗v〉W = 〈TWu, v〉W = 〈Tu, v〉 = 〈u, T ∗v〉 = 〈u, (T ∗)W v〉W .

Thus [(TW )∗ − (T ∗)W ]v an element of W ∩W⊥ = {0}.
(d) Using the previous part, TW (TW )∗ = TW (T ∗)W = (TT ∗)W . Similarly (TW )∗TW = (T ∗T )W . The

result follows from the assumption that TT ∗ = T ∗T .

6.4.11 (a) Let x ∈ V and note that
〈Tx, x〉 = 〈x, Tx〉 = 〈Tx, x〉.

Hence 〈Tx, x〉 equals its complex conjugate and is real.

(b) Let x, y ∈ V and note that

0 = 〈T (x+ y), x+ y〉
= 〈Tx, x〉+ 〈Tx, y〉+ 〈Ty, x〉+ 〈Ty, y〉
= 〈Tx, y〉+ 〈y, Tx〉
= 2Re〈Tx, y〉,

so 〈Tx, x〉 is purely imaginary. However we can also expand

0 = 〈T (x+ iy), x+ iy〉
= 〈Tx, x〉+ 〈Tx, iy〉+ 〈Tiy, x〉+ 〈Tiy, iy〉
= −i〈Tx, y〉+ i〈y, Tx〉
= 2Im〈Tx, y〉,

whence 〈Tx, y〉 has zero imaginary part as well. Thus 〈Tx, y〉 = 0 for any x, y; choosing y = Tx
shows Tx = 0. As x was arbitrary, T = 0.



(c) Let x ∈ V and compute

〈(T − T ∗)x, x〉 = 〈Tx, x〉 − 〈T ∗x, x〉 = 〈Tx, x〉 − 〈x, Tx〉.

Since 〈Tx, x〉 ∈ R, this last expression is zero. By the previous part, knowing that 〈(T−T ∗)x, x〉 =
0 for all x implies that T = T ∗.

6.5.6 Let f, g ∈ V and write

〈Tf, g〉 =

∫ 1

0

(Tf)(t)g(t) dt =

∫ 1

0

h(t)f(t)g(t) dt =

∫ 1

0

f(t)h(t)g(t) dt = 〈f, hg〉.

From this we see that T ∗g = hg. Then TT ∗f = T ∗Tf = |h|2f ; this is the identity if and only if |h| = 1.

6.5.7 Choose an orthonormal ordered basis so that

[T ]β =


λ1 0 · · · 0
0 λ2 · · · 0

. . .

0 0 · · · λn

 .

Since T is unitary, each λk has modulus 1 and hence has a square root of modulus 1 (for those unfamiliar
with complex arithmetic, a number has absolute value 1 if and only if it can be written as eit with
t ∈ R; then eit/2 has modulus one and squares to eit). Defining U as

[U ]β =


√
λ1 0 · · · 0
0

√
λ2 · · · 0

. . .

0 0 · · ·
√
λn


gives the required square root of T .

6.5.10 We need the fact that similar matrices have equal traces. With this in hand, we can diagonalize A; in
diagonal form the nonzero entries are the eignevalues and clearly tr(A) is their sum.

Furthermore, having diagonalized A we have that

PAP ∗ =


λ1 0 · · · 0
0 λ2 · · · 0

. . .

0 0 · · · λn

 and PA∗P ∗ =


λ1 0 · · · 0

0 λ2 · · · 0
. . .

0 0 · · · λn

 .

From this it follows that

PA∗AP ∗ =


|λ1|2 0 · · · 0

0 |λ2|2 · · · 0
. . .

0 0 · · · |λn|2

 .

Clearly then tr(A∗A) =
∑
|λk|2.



Homework 6

6.6.1 (a) False. Only orthogonal projections are self–adjoint.

(b) True.

(c) True. (The Spectral Theorem)

(d) False. Only true for orthogonal projections.

(e) False. Most projections aren’t invertible, let alone unitary.

6.6.4 Since W is finite dimensional, we have that V = W ⊕W⊥. By definition of T , whenever x ∈ W and
y ∈W⊥, we have T (x+ y) = x. But then (I − T )(x+ y) = y. The finite dimensionality of W implies
that (W⊥)⊥ = W , so I−T is an orthogonal projection derived from the direct sum V = W⊥⊕(W⊥)⊥.

6.6.6 We’ve seen many times that for any projection T , the space decomposes as V = R(T )⊕N(T ). Assume
that T is normal; to show that T is an orthogonal projection, we need only show that N(T ) = R(T )⊥.
Let x ∈ N(T ) and consider arbitrary y ∈ R(T ). Then y = Ty and

〈x, y〉 = 〈x, Ty〉 = 〈T ∗x, y〉 = 0,

since Tx = 0x⇔ T ∗x = 0x = 0.

Next assume that v ∈ R(T )⊥. Then

〈Tv, Tv〉 = 〈v, T ∗Tv〉 = 〈v, TT ∗v〉 = 0,

since we’ve previously shown that R(T )⊥ = N(T ∗). Hence Tv = 0 and v ∈ N(T ).

Homework 7

6.7.13 Assume that A is positive semidefinite. The eigenvalues of A∗A are σ2
i , where σi denotes the singular

values of A. Part of the definition of positive definiteness requires A to be self–adjoint, so A2 has
eigenvalues σ2

i . If λi denotes an eigenvalue of A, we know that λ2i is an eigenvalue of A2; after
rearranging the lists, we have λ2i = σ2

i for each i. Finally, the eigenvalues and singular values of a
positive semidefinite matrix are nonnegative, so we conclude that σi = λi for each i.

6.7.15 (a) (⇒) Assume that A is normal, and consider the polar decomposition A = WP with W unitary
and P positive semidefinite. Then

P ∗W ∗WP = (WP )∗WP = A∗A = AA∗ = WP (WP )∗ = WPP ∗W ∗.

By definition we assume that positive operators are self–adjoint, so P ∗ = P . Furthermore,
WW ∗ = W ∗W = I, so we have

P 2 = WP 2W ∗.

Multiplying on the right by W gives the result.

(⇐) Assume that WP 2 = P 2W and note that

A∗AW = P ∗W ∗WPW = P 2W = WP 2 = WP 2W ∗W = AA∗W.

Multiplying by W ∗ on the right gives AA∗ = A∗A.

(b) (⇒) Assume that A is normal. By the previous part, WP 2 = P 2W , which rearranges into

P 2 = W ∗P 2W = W ∗P (WW ∗)PW = (W ∗PW )2.

Since W ∗PW is unitarily equivalent to P , it is also positive semidefinite. Positive semidefinite
operators admit square roots, so the above equation becomes P = W ∗PW , which is equivalent
to WP = PW .

(⇐) Assume that WP = PW . Then WP 2 = PWP = P 2W , so A is normal by the previous part.



6.8.7 (a) Given H ∈ B(W ), the domain of T̂H is certainly V × V . For bilinearity, we check the first
argument:

T̂H(ax+ y, z) = H(T (ax+ y), T z) = H(aTx+ Ty, Tz)

= aH(Tx, Tz) +H(Ty, Tz)

= aT̂H(x, z) + T̂H(y, z)

holds for any x, y, z ∈ V and scalar a. Hence T̂H is linear in the first argument; the same reasoning
shows T̂H to be linear in its second argument, so we conclude that T̂H ∈ B(V ).

(b) This is similar to the previous part. Given bilinear forms H,J ∈ B(W ) and a scalar a, we have

T̂ (aH + J)(x, y) = (aH + J)(Tx, Ty) = aH(Tx, Ty) + J(Tx, Ty)

= aT̂H(x, y) + T̂ J(x, y)

for any x, y ∈ V . Hence T̂ is linear.

(c) We could show that T̂ is bijective, but instead we can construct an obvious inverse map. Note
that

T̂ T̂−1H(x, y) = H(TT−1x, TT−1y) = H(x, y)

T̂−1T̂H(x, y) = H(T−1Tx, T−1Ty) = H(x, y),

so T̂−1 is an inverse map of T̂ , proving T̂ to be invertible.


