Matth 108B Selected Homework Solutions
Charles Martin
March 5, 2013

Homework 1

5.1.7 (a) If matrices \(A, B \) both represent \(T \) under different bases, then for some invertible matrix \(Q \) we have \(B = QAQ^{-1} \). Then
\[
\det(B) = \det(QAQ^{-1}) = \det(Q) \cdot \det(A) \cdot \det(Q^{-1}),
\]
since the determinant for matrices is multiplicative. Furthermore \(\det(Q^{-1}) = (\det(Q))^{-1} \), so
\[
\det(B) = \det(A),
\]
as desired.

(b) We know that \(T \) is invertible if and only if its matrix is invertible with respect to any basis; we also know that a matrix is invertible if and only if its determinant is zero. If \(A \) is a matrix representing \(T \) in some basis, then \(T \) is invertible if and only if \(A \) is invertible if and only if \(\det(T) = \det(A) \neq 0 \).

(c) If \(T \) has matrix \(A \) under some basis, then \(T^{-1} \) has matrix \(A^{-1} \) under the same basis. Thus
\[
\det(T^{-1}) = \det(A^{-1}) = \det(A)^{-1} = \det(T)^{-1}.
\]

(d) If operators \(T, U \) are represented by matrices \(A, B \) (respectively) in some basis, then the matrix for \(TU \) is \(AB \). From this we have
\[
\det(TU) = \det(AB) = \det(A) \det(B) = \det(T) \det(U),
\]
since the determinant for matrices is multiplicative.

(e) Given any ordered basis \(\beta = \{v_1, \ldots, v_n\} \), the identity map \(I_V \) maps each \(v_i \) to itself. That is, \([I_V]_{\beta} = I \). Matrix subtraction is defined so that \([T - \lambda I_V]_{\beta} = [T]_{\beta} - \lambda[I_V]_{\beta} = [T]_{\beta} - \lambda I \). Therefore
\[
\det(T - \lambda I_V) = \det([T - \lambda I_V]_{\beta}) = \det([T]_{\beta} - \lambda I).
\]

Homework 2

5.1.8 Let \(T : V \to V \) be a linear operator.

(a) \(\Rightarrow \) Assume that \(T \) is invertible and \(Tv = 0 \) for some vector \(v \). Multiplying by \(T^{-1} \) gives \(v = 0 \), so the equation \(Tv = 0v \) has only trivial solutions; that is, zero is not an eigenvalue.

\(\Leftarrow \) Suppose that the equation \(Tv = 0 \) has only the trivial solution \(v = 0 \). That is, \(\ker(T) = \{0\} \). Since \(V \) is finite-dimensional, this implies \(T \) is invertible.

(b) Suppose that \(T \) is invertible and that \(Tv = \lambda v \) for some \(\lambda \neq 0 \) and \(v \neq 0 \). Multiplying by \(T^{-1} \) and \(\lambda^{-1} \) gives \(T^{-1}v = \lambda^{-1}v \). Multiplying by \(T \) and \(\lambda \) reverses the argument.
5.1.14 We know that \(\det(A) = \det(A^t) \) for all matrices \(A \); furthermore \((\lambda I)^t = \lambda I \). Since the transpose operation is additive we have
\[
\det(A - \lambda I) = \det((A - \lambda I)^t) = \det(A^t - \lambda I).
\]

5.1.15a If \(Tv = \lambda v \) for some nonzero \(v \), then \(T^2v = T(Tv) = \lambda(Tv) = \lambda^2v \). Similarly, \(T^n v = \lambda^n v \) for each \(n \); an inductive argument shows that \(T^n v = \lambda^n v \) for all integers \(n \geq 0 \).

5.2.20 Throughout the following, \(V \) is a finite-dimensional vector space with subspaces \(W_1, \ldots, W_k \) satisfying
\[
V = \sum_{i=1}^{k} W_i.
\]
Note that with no further assumptions we have
\[
\dim(V) \leq \sum_{i=1}^{k} \dim(W_i),
\]
which can be proved with induction and the readily-verified result
\[
\dim(W_1 + W_2) \leq \dim(W_1) + \dim(W_2).
\]
Let’s give a brief proof of the above inequality. Given bases \(\beta = \{v_1, \ldots, v_m\} \) and \(\gamma = \{w_1, \ldots, w_n\} \) for \(W_1 \) and \(W_2 \) respectively, we claim that \(\beta \cup \gamma \) spans \(W_1 + W_2 \). Indeed, given an arbitrary vector \(x + y \in W_1 + W_2 \) with \(x \in W_1 \) and \(y \in W_2 \), we find scalars so that \(x = \sum c_i v_i \) and \(y = \sum d_i w_i \). Then
\[
x + y = \left(c_1 v_1 + \cdots + c_m v_m \right) + \left(d_1 w_1 + \cdots + d_n w_n \right) \in \text{span}(\beta \cup \gamma).
\]
Thus the size of a basis for \(W_1 + W_2 \) must be at most the size of \(\beta \cup \gamma \), and we have
\[
\dim(W_1 + W_2) \leq |\beta \cup \gamma| \leq |\beta| + |\gamma| = \dim(W_1) + \dim(W_2).
\]
\(\Rightarrow \) Assume that \(V = W_1 \oplus \cdots \oplus W_k \). By theorem 5.10d, if we take an ordered basis \(\beta_i \) for each space \(W_i \), then \(\beta = \beta_1 \cup \cdots \cup \beta_k \) is a basis for \(V \). This gives
\[
|\beta| = \dim(V) \leq \sum_{i=1}^{k} \dim(W_i) = \sum_{i=1}^{k} |\beta_i|.
\]
Thus it suffices to prove that $|\beta| = \sum |\beta_i|$. Suppose that $v \in \beta_1 \cap \beta_2$ and note that we can write the zero vector nontrivially as $0 = v + (-v) + 0 + \cdots + 0 \in W_1 + W_2 + \cdots + W_k$.

This contradicts our assumption that the sum $\sum W_i$ is direct. Hence $\beta_1 \cap \beta_2 = \emptyset$; the same argument shows that $\beta_i \cap \beta_j = \emptyset$ for any $i \neq j$. Since the sets are pairwise disjoint, we have $|\beta| = \sum |\beta_i|$, as desired.

(\Leftarrow) Now we assume that $\dim(V) = \sum_{i=1}^{k} \dim(W_i)$.

For each W_i find an ordered basis β_i and consider the set $\beta = \beta_1 \cup \cdots \cup \beta_k$; we do not know a priori that the bases β_i are pairwise disjoint, so we only have an inequality:

$$|\beta| \leq \sum_{i=1}^{k} |\beta_i| = \sum_{i=1}^{k} \dim(W_i).$$

(1)

We claim that β spans V. Indeed, given $x \in V = \sum W_i$ we can write

$$x = w_1 + \cdots + w_k$$

with $w_i \in W_i$ for each i. Each w_i can be written as a linear combination of the elements of β_i, so x can be written as a linear combination of the elements of β — we could use explicit notation for this argument, but it would greatly clutter the simple idea at work. Since β spans V, it must have size at least $\dim V$; combining this with equation (1) gives

$$\dim(V) \leq |\beta| \leq \sum_{i=1}^{k} \dim(W_i) = \dim(V).$$

We deduce that $|\beta| = \dim(V)$, and since β spans V we further conclude that β is a basis of V. By theorem 5.10d, V is the direct sum of the spaces W_i.

Homework 3

5.4.1 (a) False. Any operator $T : V \to V$ has $T(V) \subseteq V$.

(b) True. The roots of the characteristic polynomial are eigenvalues. An eigenvalue for T_W is an eigenvalue for T, so the roots of the characteristic polynomial of T_W are among those of the polynomial for T.

(c) False. We could have, for example, $v' = 2v$.

(d) False. The T–cyclic subspace generated by v might not include v in its span. For example, take $T = 0$ on \mathbb{R}^2 and any vector $v \neq 0$. The T–cyclic subspace generated by v is the span of v, but the T–cyclic subspace of Tv is trivial.

(e) True. This follows from the Cayley–Hamilton theorem.

(f) True. The matrix on displayed on page 316 has characteristic polynomial $(-1)^n(a_0 + a_1 t + \cdots + a_{k-1} t^{k-1} + t^k)$.

(g) True. Take a basis β_i of each T–invariant subspace W_i and consider the basis $\cup_i \beta_i$ for the whole space.

5.4.3 (a) Since $T : V \to V$ is linear, clearly $T(\{0\}) = \{0\}$ and $T(V) \subseteq V$.
(b) Given \(x \in N(T) \) we have \(Tx = 0 \in N(T) \). Given \(y \in R(T) \) we have \(Ty \in R(T) \) by definition of the range.

(c) Given \(v \in E_\lambda \), we have \(Tv = \lambda v \in E_\lambda \).

5.4.18 (a) Given any \(x \in W \), we can find scalars \(c_0, \ldots, c_k \) so that \(x = c_0v + c_1Tv + \cdots + c_kT^kv \). Then

\[
Tx = c_0Tv + c_1T^2v + \cdots + c_kT^{k+1}v,
\]

which is also a linear combination of vectors of the form \(T^jv \). Hence \(Tx \in W \).

(b) Let \(S \) be a \(T \)-invariant subspace of \(V \) containing \(v \). An inductive argument shows that every iterate \(T^jv \) is in \(S \); indeed, \(T^0v = v \in S \) and whenever \(T^jv \in S \) we must also have \(T^{j+1}v = T(T^jv) \in S \) by virtue of \(T \)-invariance. Since \(S \) is a space, it must contain the span of the iterates \(T^jv \), which is precisely the space \(W \).

5.4.21 Let \(V \) be a two-dimensional space and \(T : V \rightarrow V \). There are two possibilities that can occur: either \(\{x, Tx\} \) is linearly independent for some vector \(x \in V \), or \(\{x, Tx\} \) is always linearly dependent. In the former situation we’d have that \(V \) is the \(T \)-cyclic space generated by \(x \), so we’d be done. Hence we assume that \(\{x, Tx\} \) is linearly dependent for every vector \(x \in V \). We will show in this case that \(T = cI \) for some scalar \(c \); that is, for some fixed scalar \(c \) every vector \(x \in V \) satisfies \(Tx = cx \). This is clearly true for \(x = 0 \), so from here on we only consider nonzero vectors \(x \).

Given a nonzero vector \(x \in V \), the linear dependence of the set \(\{x, Tx\} \) means we can find scalars \(c_1 \) and \(c_2 \) — not both zero — so that

\[
c_1x + c_2Tx = 0.
\]

If \(c_2 = 0 \) then \(c_1 \neq 0 \) and we must have \(x = 0 \). Since we wanted to exclude this case, we cannot have \(c_2 = 0 \). Dividing by \(c_2 \), we see that

\[
Tx = -(c_1/c_2)x.
\]

Rewriting \(-c_1/c_2 = c \), we find that every vector \(x \in V \) satisfies an eigenvalue equation \(Tx = cx \). We do not yet know, however, that the same scalar \(c \) works for all vectors.

Consider nonzero vectors \(x, y \in V \) and find scalars \(a, b \) so that \(Tx = ax \) and \(Ty = by \). If we show that \(a = b \), then we’re done. To this end, we can assume that \(x \) and \(y \) are not scalar multiples of each other; that is, assume that \(\{x, y\} \) is linearly independent. The vector \(x + y \) also satisfies an eigenvalue equation of the form \(T(x + y) = c(x + y) \), but linearity yields

\[
c(x + y) = T(x + y) = Tx + Ty = ax + by,
\]

so that \((c - a)x + (c - b)y = 0\). The linear independence of \(\{x, y\} \) implies that \(a = b \), as desired.

6.1.10 Assuming that \(x \) and \(y \) are orthogonal vectors in an inner product space \(V \), we have

\[
\|x + y\|^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle = \langle x, x \rangle + \langle y, y \rangle = \|x\|^2 + \|y\|^2.
\]

The standard inner product in \(\mathbb{R}^2 \) yields the Pythagorean theorem.

6.1.17 Let \(T \) be a linear operator on an inner product space \(V \) satisfying \(\|Tx\| = \|x\| \) for all \(x \in V \) (such an operator is typically called an isometry). If \(x \in V \) is chosen so that \(Tx = 0 \), then \(\|x\| = \|Tx\| = 0 \), so \(x = 0 \) as well. That is, the null space of \(T \) is trivial, so \(T \) is injective.

Homework 4

6.2.6 Given a vector \(x \notin W \) we can use theorem 6.6 to write \(x = w + z \), with \(w \in W \) and \(z \in W^\perp \). If \(z \) were zero then we would have \(x = w \in W \), so \(z \neq 0 \). Notice that \(z \in W^\perp \) and

\[
\langle x, z \rangle = \langle w + z, z \rangle = \langle w, z \rangle + \langle z, z \rangle = 0 + \|z\|^2 \neq 0.
\]
6.2.11 Given \(i, j \in \{1, 2, \ldots, n\} \) the component formula for matrix multiplication gives

\[
(AA^*)_{ij} = \sum_{k=1}^{n} A_{ik}(A^*)_{kj} = \sum_{k=1}^{n} A_{ik}A_{jk}.
\]

This last expression is the inner product of rows \(i \) and \(j \); thus if the rows of \(AA^* \) are orthonormal, we have \((AA^*)_{ij} = 0\) when \(i \neq j \) and \((AA^*)_{ii} = 1\). That is, \(AA^* = I \). Conversely if \(AA^* = I \) then the rows are orthonormal by the same argument in reverse.

6.2.13 (a) Assume that \(S_0 \subseteq S \) and let \(y \in S^\perp \). Given an arbitrary \(x \in S_0 \) we have \(\langle x, y \rangle = 0 \). Thus \(y \in S_0^\perp \) and we conclude \(S^\perp \subseteq S_0^\perp \).

(b) Given \(x \in S \) note that \(x \) is orthogonal to every element of \(S^\perp \). But then \(x \in (S^\perp)^\perp \). Since the orthogonal complement of any set is a space, this implies \(\text{span}(S) \subseteq (S^\perp)^\perp \).

(c) It remains to show that \((W^\perp)^\perp \subseteq W \). Suppose that \(x \notin W \); by problem 6.2.6 there exists \(y \in W^\perp \) with \(\langle x, y \rangle \neq 0 \). That is, \(x \) is not orthogonal to some element of \(W^\perp \) and \(x \notin (W^\perp)^\perp \).

(d) By theorem 6.6 any vector in \(V \) can be written as a sum of the form \(w + z \), with \(w \in W \) and \(z \in W^\perp \). Hence \(V = W + W^\perp \). Suppose that \(y \in W \cap W^\perp \). Since \(y \in W^\perp \), it must be orthogonal to every element of \(W \); in particular \(\langle y, y \rangle = 0 \). This implies \(y = 0 \), so \(W \cap W^\perp = \{0\} \). We conclude that \(V = W \oplus W^\perp \).

6.3.7 Consider \(\mathbb{R}^2 \) with the standard inner product and standard basis \(\{e_1, e_2\} \). Define the linear operator \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) by \(T(e_1) = 0 \) and \(T(e_2) = e_1 \). Notice that \(e_2 \notin N(T) \); we'll show that \(e_2 \in N(T^*) \). We compute \(\langle e_1, T^*e_2 \rangle = \langle Te_1, e_2 \rangle = 0 \) and \(\langle e_2, T^*e_2 \rangle = \langle Te_2, e_2 \rangle = \langle e_1, e_2 \rangle = 0 \). Since \(T^*e_2 \) is orthogonal to both vectors in the basis, \(T^*e_2 = 0 \). Thus \(N(T) \neq N(T^*) \).

6.3.9 Let \(x \in V \) be arbitrary; we want to show that \(T^*x - Tx = 0 \). Since \(V = W \oplus W^\perp \) by assumption, we can write \(T^*x - Tx = w + z \) with \(w \in W \) and \(z \in W^\perp \). Note that

\[
\|T^*x - Tx\|^2 = \langle T^*x - Tx, T^*x - Tx \rangle = \langle T^*x - Tx, w \rangle + \langle T^*x - Tx, z \rangle,
\]

so we need only show that each inner product on the right vanishes. For the first product, we make two observations: \(w \in W \) implies \(Tw = w \) and \(x - Tx \in W^\perp \). With these in mind we have

\[
\langle T^*x - Tx, w \rangle = \langle T^*x, w \rangle - \langle Tx, w \rangle = \langle x, Tw \rangle - \langle Tx, w \rangle = \langle x, w \rangle - \langle Tx, w \rangle = \langle x - Tx, w \rangle = 0.
\]

For the second product, note that since \(z \in W^\perp \) we have both \(Tz = 0 \) and \(\langle Tx, z \rangle = 0 \). This gives

\[
\langle T^*x - Tx, z \rangle = \langle T^*x, z \rangle - \langle Tx, z \rangle = \langle x, Tz \rangle = 0.
\]

We conclude that \(T^*x - Tx = 0 \); as \(x \) was arbitrary, \(T = T^* \).

6.3.12 (a) Let \(x \in R(T^*)^\perp \). Then for any vector \(y \in V \) we have \(\langle x, T^*y \rangle = 0 \). Choosing \(y = Tx \) gives

\[
0 = \langle x, T^*Tx \rangle = \langle Tx, Tx \rangle = \|Tx\|^2,
\]

so \(Tx = 0 \). That is, \(x \in N(T) \) and \(R(T^*)^\perp \subseteq N(T) \).

Now suppose that \(x \in N(T) \) and \(T^*y \in R(T^*) \) is arbitrary. Then

\[
\langle x, T^*y \rangle = \langle Tx, y \rangle = 0,
\]

so \(x \in R(T^*)^\perp \). We conclude that \(N(T) \subseteq R(T^*)^\perp \), whence the spaces are equal.

(b) From exercise 6.2.13 we know that in a finite–dimensional space, \((W^\perp)^\perp = W \) for any subspace \(W \). Using the previous part gives

\[
N(T)^\perp = (R(T^*)^\perp)^\perp = R(T^*),
\]

as desired.
Homework 5

6.4.1 (a) True.
(b) False. Consider the map $T : \mathbb{R}^2 \to \mathbb{R}^2$ with $T(e_1) = 0$ and $T(e_2) = e_1$. You can show that $T^*(e_1) = e_2$ and $T^*(e_2) = 0$. That is, e_1 is an eigenvector of T with eigenvalue 0, but not for T^*.
(c) False. This only holds for orthonormal bases β.
(d) True.
(e) True.
(f) True.
(g) False; if the underlying field is real, self–adjointness is needed.
(h) True.

6.4.7 (a) Let $u,v \in W$. Then

$$\langle T_W u, v \rangle_W = \langle Tu, v \rangle = \langle u, Tv \rangle = \langle u, T_W v \rangle_W.$$

Hence T_W is self–adjoint.
(b) Let $v \in W^\perp$. Given $u \in W$ we have

$$\langle T^* v, u \rangle = \langle v, Tu \rangle = 0,$$

since $Tu \in W$. Thus $T^* v \in W^\perp$ and W^\perp is T^*–invariant.
(c) Let $u,v \in W$. Then

$$\langle u, (T_W)^* v \rangle_W = \langle T_W u, v \rangle_W = \langle Tu, v \rangle = \langle u, T^* v \rangle = \langle u, (T^*_W)v \rangle_W.$$

Thus $[(T_W)^* - (T^*_W)]v$ an element of $W \cap W^\perp = \{0\}$.
(d) Using the previous part, $T_W(T_W)^* = T_W(T^*_W) = (TT^*_W)$. Similarly $(T_W)^*T_W = (T^*T)_W$. The result follows from the assumption that $TT^* = T^*T$.

6.4.11 (a) Let $x \in V$ and note that

$$\langle Tx, x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}.$$

Hence $\langle Tx, x \rangle$ equals its complex conjugate and is real.
(b) Let $x,y \in V$ and note that

$$0 = \langle T(x+y), x+y \rangle$$
$$= \langle Tx, x \rangle + \langle Tx, y \rangle + \langle Ty, x \rangle + \langle Ty, y \rangle$$
$$= \langle Tx, y \rangle + \langle y, Tx \rangle$$
$$= 2\text{Re}(Tx,y),$$

so $\langle Tx, x \rangle$ is purely imaginary. However we can also expand

$$0 = \langle T(x+iy), x+iy \rangle$$
$$= \langle Tx, x \rangle + \langle Tx, iy \rangle + \langle Ty, x \rangle + \langle Ty, iy \rangle$$
$$= -i\langle Tx, y \rangle + i\langle y, Tx \rangle$$
$$= 2\text{Im}(Tx,y),$$

whence $\langle Tx, y \rangle$ has zero imaginary part as well. Thus $\langle Tx, y \rangle = 0$ for any x,y; choosing $y = Tx$ shows $Tx = 0$. As x was arbitrary, $T = 0$.
(c) Let \(x \in V \) and compute
\[
\langle (T - T^*) x, x \rangle = \langle Tx, x \rangle - \langle T^* x, x \rangle = \langle Tx, x \rangle - \langle x, Tx \rangle.
\]
Since \(\langle Tx, x \rangle \in \mathbb{R} \), this last expression is zero. By the previous part, knowing that \(\langle (T - T^*) x, x \rangle = 0 \) for all \(x \) implies that \(T = T^* \).

6.5.6 Let \(f, g \in V \) and write
\[
\langle Tf, g \rangle = \int_0^1 (Tf)(t \overline{g(t)}) \, dt = \int_0^1 h(t)f(t)g(t) \, dt = \int_0^1 f(t)h(t)g(t) \, dt = \langle f, hg \rangle.
\]
From this we see that \(T^* g = hg \). Then \(TT^* f = T^* Tf = |h|^2 f \); this is the identity if and only if \(|h| = 1 \).

6.5.7 Choose an orthonormal ordered basis so that
\[
[T]_\beta = \begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}.
\]
Since \(T \) is unitary, each \(\lambda_k \) has modulus 1 and hence has a square root of modulus 1 (for those unfamiliar with complex arithmetic, a number has absolute value 1 if and only if it can be written as \(e^{it} \) with \(t \in \mathbb{R} \); then \(e^{it/2} \) has modulus one and squares to \(e^{it} \)). Defining \(U \) as
\[
[U]_\beta = \begin{pmatrix}
\sqrt{\lambda_1} & 0 & \cdots & 0 \\
0 & \sqrt{\lambda_2} & \cdots & 0 \\
0 & 0 & \cdots & \sqrt{\lambda_n}
\end{pmatrix}
\]
gives the required square root of \(T \).

6.5.10 We need the fact that similar matrices have equal traces. With this in hand, we can diagonalize \(A \); in diagonal form the nonzero entries are the eigenvalues and clearly \(\text{tr}(A) \) is their sum.

Furthermore, having diagonalized \(A \) we have that
\[
PAP^* = \begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
0 & 0 & \cdots & \lambda_n
\end{pmatrix} \quad \text{and} \quad PA^*P = \begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}.
\]
From this it follows that
\[
PA^*AP = \begin{pmatrix}
|\lambda_1|^2 & 0 & \cdots & 0 \\
0 & |\lambda_2|^2 & \cdots & 0 \\
0 & 0 & \cdots & |\lambda_n|^2
\end{pmatrix}.
\]
Clearly then \(\text{tr}(A^* A) = \sum |\lambda_k|^2 \).
Homework 6

6.6.1 (a) False. Only orthogonal projections are self-adjoint.
(b) True.
(c) True. (The Spectral Theorem)
(d) False. Only true for orthogonal projections.
(e) False. Most projections aren’t invertible, let alone unitary.

6.6.4 Since W is finite dimensional, we have that $V = W \oplus W^\perp$. By definition of T, whenever $x \in W$ and $y \in W^\perp$, we have $T(x + y) = x$. But then $(I - T)(x + y) = y$. The finite dimensionality of W implies that $(W^\perp)^\perp = W$, so $I - T$ is an orthogonal projection derived from the direct sum $V = W^\perp \oplus (W^\perp)^\perp$.

6.6.6 We’ve seen many times that for any projection T, the space decomposes as $V = R(T) \oplus N(T)$. Assume that T is normal; to show that T is an orthogonal projection, we need only show that $N(T) = R(T)^\perp$.

Let $x \in N(T)$ and consider arbitrary $y \in R(T)$. Then $y = Ty$ and

$$\langle x, y \rangle = \langle x, Ty \rangle = \langle T^*x, y \rangle = 0,$$

since $Tx = 0x \Leftrightarrow T^*x = 0x = 0$.

Next assume that $v \in R(T)^\perp$. Then

$$\langle Tv, Tv \rangle = \langle v, T^*Tv \rangle = \langle v, TT^*v \rangle = 0,$$

since we’ve previously shown that $R(T)^\perp = N(T^*)$. Hence $Tv = 0$ and $v \in N(T)$.

Homework 7

6.7.13 Assume that A is positive semidefinite. The eigenvalues of A^*A are σ_i^2, where σ_i denotes the singular values of A. Part of the definition of positive definiteness requires A to be self-adjoint, so A^2 has eigenvalues σ_i^2. If λ_i denotes an eigenvalue of A, we know that λ_i^2 is an eigenvalue of A^2; after rearranging the lists, we have $\lambda_i^2 = \sigma_i^2$ for each i. Finally, the eigenvalues and singular values of a positive semidefinite matrix are nonnegative, so we conclude that $\sigma_i = \lambda_i$ for each i.

6.7.15 (a) (\Rightarrow) Assume that A is normal, and consider the polar decomposition $A = WP$ with W unitary and P positive semidefinite. Then

By definition we assume that positive operators are self-adjoint, so $P^* = P$. Furthermore, $WW^* = W^*W = I$, so we have

$$P^2 = WP^2W^*.$$

Multiplying on the right by W gives the result.

(\Leftarrow) Assume that $WP^2 = P^2W$ and note that

$$A^*AW = P^*W^*WPW = P^2W = WP^2 = WP^2W^*W = AA^*W.$$

Multiplying by W^* on the right gives $AA^* = A^*A$.

(b) (\Rightarrow) Assume that A is normal. By the previous part, $WP^2 = P^2W$, which rearranges into

$$P^2 = W^*P^2W = W^*P(WW^*)PW = (W^*PW)^2.$$

Since W^*PW is unitarily equivalent to P, it is also positive semidefinite. Positive semidefinite operators admit square roots, so the above equation becomes $P = W^*PW$, which is equivalent to $WP = PW$.

(\Leftarrow) Assume that $WP = PW$. Then $WP^2 = PWP = P^2W$, so A is normal by the previous part.
6.8.7 (a) Given $H \in B(W)$, the domain of $\hat{T}H$ is certainly $V \times V$. For bilinearity, we check the first argument:

\[
\hat{T}H(ax + y, z) = H(T(ax + y), Tz) = H(aTx + Ty, Tz) \\
= aH(Tx, Tz) + H(Ty, Tz) \\
= a\hat{T}H(x, z) + \hat{T}H(y, z)
\]

holds for any $x, y, z \in V$ and scalar a. Hence $\hat{T}H$ is linear in the first argument; the same reasoning shows $\hat{T}H$ to be linear in its second argument, so we conclude that $\hat{T}H \in B(V)$.

(b) This is similar to the previous part. Given bilinear forms $H, J \in B(W)$ and a scalar a, we have

\[
\hat{T}(aH + J)(x, y) = (aH + J)(Tx, Ty) = aH(Tx, Ty) + J(Tx, Ty) \\
= a\hat{T}H(x, y) + \hat{T}J(x, y)
\]

for any $x, y \in V$. Hence \hat{T} is linear.

(c) We could show that \hat{T} is bijective, but instead we can construct an obvious inverse map. Note that

\[
\hat{T}\hat{T}^{-1}H(x, y) = H(TT^{-1}x, TT^{-1}y) = H(x, y) \\
\hat{T}^{-1}\hat{T}H(x, y) = H(T^{-1}Tx, T^{-1}Ty) = H(x, y),
\]

so \hat{T}^{-1} is an inverse map of \hat{T}, proving \hat{T} to be invertible.