Math 108B Selected Homework Solutions

Charles Martin

March 5, 2013

Homework 1

5.1.7 (a) If matrices A, B both represent T under different bases, then for some invertible matrix Q we have $B = QAQ^{-1}$. Then

$$\det(B) = \det(QAQ^{-1}) = \det(Q) \cdot \det(A) \cdot \det(Q^{-1}).$$

since the determinant for matrices is multiplicative. Furthermore $det(Q^{-1}) = (det(Q))^{-1}$, so

$$\det(B) = \det(A),$$

as desired.

- (b) We know that T is invertible if and only if its matrix is invertible with respect to any basis; we also know that a matrix is invertible if and only if its determinant is zero. If A is a matrix representing T in some basis, then T is invertible if and only if A is invertible if and only if $\det(T) = \det(A) \neq 0$.
- (c) If T has matrix A under some basis, then T^{-1} has matrix A^{-1} under the same basis. Thus

$$\det(T^{-1}) = \det(A^{-1}) = \det(A)^{-1} = \det(T)^{-1}.$$

(d) If operators T, U are represented by matrices A, B (respectively) in some basis, then the matrix for TU is AB. From this we have

$$\det(TU) = \det(AB) = \det(A)\det(B) = \det(T)\det(U),$$

since the determinant for matrices is multiplicative.

(e) Given any ordered basis $\beta = \{v_1, \ldots, v_n\}$, the identity map I_V maps each v_i to itself. That is, $[I_V]_{\beta} = I$. Matrix subtraction is defined so that $[T - \lambda I_V]_{\beta} = [T]_{\beta} - \lambda [I_V]_{\beta} = [T]_{\beta} - \lambda I$. Therefore

$$\det(T - \lambda I_V) = \det([T - \lambda I_V]_{\beta}) = \det([T]_{\beta} - \lambda I)$$

Homework 2

5.1.8 Let $T: V \to V$ be a linear operator.

- (a) (⇒) Assume that T is invertible and Tv = 0 for some vector v. Multiplying by T⁻¹ gives v = 0, so the equation Tv = 0v has only trivial solutions; that is, zero is not an eigenvalue.
 (⇐) Suppose that the equation Tv = 0 has only the trivial solution v = 0. That is, ker(T) = {0}. Since V is finite-dimensional, this implies T is invertible.
- (b) Suppose that T is invertible and that $Tv = \lambda v$ for some $\lambda \neq 0$ and $v \neq 0$. Multiplying by T^{-1} and λ^{-1} gives $T^{-1}v = \lambda^{-1}v$. Multiplying by T and λ reverses the argument.

5.1.14 We know that $det(A) = det(A^t)$ for all matrices A; furthermore $(\lambda I)^t = \lambda I$. Since the transpose operation is additive we have

$$\det(A - \lambda I) = \det((A - \lambda I)^t) = \det(A^t - \lambda I).$$

- 5.1.15a If $Tv = \lambda v$ for some nonzero v, then $T^2v = T(Tv) = \lambda(Tv) = \lambda^2 v$. Similarly, $T^n v = \lambda T^{n-1}v$ for each n; an inductive argument shows that $T^n v = \lambda^n v$ for all integers $n \ge 0$.
 - 5.2.1 (a) False. For example, the identity map on \mathbb{R}^3 has only the eigenvalue 1.
 - (b) False. For example, for the identity map on \mathbb{R}^2 the standard basis vectors e_1 and e_2 are eigenvectors with eigenvalue 1, though $\{e_1, e_2\}$ is linearly independent.
 - (c) False. We never consider 0 to be an eigenvector, though it must be in any eigenspace.
 - (d) True. If v satisfies $Tv = \lambda_i v$ for i = 1, 2, then $(\lambda_1 \lambda_2)v = 0$; if $\lambda_1 \neq \lambda_2$, then v = 0.
 - (e) True.
 - (f) False. The eigenvalues might not exist in the field. For example, the 90° rotation of \mathbb{R}^2 has no eigenvalues in \mathbb{R} . It is not diagonalizable over \mathbb{R} , even though "every eigenvalue λ has multiplicity equal to dim (E_{λ}) ," a statement which holds vacuously.
 - (g) True.
 - (h) True.
 - (i) False. For example take three distinct lines through the origin in \mathbb{R}^2 . Each pair has a trivial intersection, but the sum of any two is the entire plane (which intersects the third line nontrivially).

5.2.20 Throughout the following, V is a finite-dimensional vector space with subspaces W_1, \ldots, W_k satisfying

$$V = \sum_{i=1}^{k} W_i.$$

Note that with no further assumptions we have

$$\dim(V) \le \sum_{i=1}^{k} \dim(W_i),$$

which can be proved with induction and the readily-verified result

$$\dim(W_1 + W_2) \le \dim(W_1) + \dim(W_2).$$

Let's give a brief proof of the above inequality. Given bases $\beta = \{v_1, \ldots, v_m\}$ and $\gamma = \{w_1, \ldots, w_n\}$ for W_1 and W_2 respectively, we claim that $\beta \cup \gamma$ spans $W_1 + W_2$. Indeed, given an arbitrary vector $x + y \in W_1 + W_2$ with $x \in W_1$ and $y \in W_2$, we find scalars so that $x = \sum c_i v_i$ and $y = \sum d_i w_i$. Then

$$x + y = (c_1v_1 + \dots + c_mv_m) + (d_1w_1 + \dots + d_nw_n) \in \operatorname{span}(\beta \cup \gamma).$$

Thus the size of a basis for $W_1 + W_2$ must be at most the size of $\beta \cup \gamma$, and we have

$$\dim(W_1 + W_2) \le |\beta \cup \gamma| \le |\beta| + |\gamma| = \dim(W_1) + \dim(W_2)$$

 (\Rightarrow) Assume that $V = W_1 \oplus \cdots \oplus W_k$. By theorem 5.10d, if we take an ordered basis β_i for each space W_i , then $\beta = \beta_1 \cup \cdots \cup \beta_k$ is a basis for V. This gives

$$|\beta| = \dim(V) \le \sum_{i=1}^{k} \dim(W_i) = \sum_{i=1}^{k} |\beta_i|.$$

Thus it suffices to prove that $|\beta| = \sum |\beta_i|$. Suppose that $v \in \beta_1 \cap \beta_2$ and note that we can write the zero vector nontrivially as

$$0 = v + (-v) + 0 + \dots + 0 \in W_1 + W_2 + \dots + W_k$$

This contradicts our assumption that the sum $\sum W_i$ is direct. Hence $\beta_1 \cap \beta_2 = \emptyset$; the same argument shows that $\beta_i \cap \beta_j = \emptyset$ for any $i \neq j$. Since the sets are pairwise disjoint, we have $|\beta| = \sum |\beta_i|$, as desired.

 (\Leftarrow) Now we assume that

$$\dim(V) = \sum_{i=1}^{k} \dim(W_i).$$

For each W_i find an ordered basis β_i and consider the set $\beta = \beta_1 \cup \cdots \cup \beta_k$; we do not know a priori that the bases β_i are pairwise disjoint, so we only have an inequality:

$$|\beta| \le \sum_{i=1}^{k} |\beta_i| = \sum_{i=1}^{k} \dim(W_i).$$
 (1)

We claim that β spans V. Indeed, given $x \in V = \sum W_i$ we can write

$$x = w_1 + \dots + w_k$$

with $w_i \in W_i$ for each *i*. Each w_i can be written as a linear combination of the elements of β_i , so *x* can be written as a linear combination of the elements of β — we could use explicit notation for this argument, but it would greatly clutter the simple idea at work. Since β spans *V*, it must have size at least dim *V*; combining this with equation (1) gives

$$\dim(V) \le |\beta| \le \sum_{i=1}^{k} \dim(W_i) = \dim(V).$$

We deduce that $|\beta| = \dim(V)$, and since β spans V we further conclude that β is a basis of V. By theorem 5.10d, V is the direct sum of the spaces W_i .

Homework 3

- 5.4.1 (a) False. Any operator $T: V \to V$ has $T(V) \subseteq V$.
 - (b) True. The roots of the characteristic polynomial are eigenvalues. An eigenvalue for T_W is an eigenvalue for T, so the roots of the characteristic polynomial of T_W are among those of the polynomial for T.
 - (c) False. We could have, for example, v' = 2v.
 - (d) False. The *T*-cyclic subspace generated by v might not include v in its span. For example, take T = 0 on \mathbb{R}^2 and any vector $v \neq 0$. The *T*-cyclic subspace generated by v is the span of v, but the *T*-cyclic subspace of Tv is trivial.
 - (e) True. This follows from the Cayley–Hamilton theorem.
 - (f) True. The matrix on displayed on page 316 has characteristic polynomial $(-1)^n (a_0 + a_1 t + \dots + a_{k-1} t^{k-1} + t^k)$.
 - (g) True. Take a basis β_i of each *T*-invariant subspace W_i and consider the basis $\cup_i \beta_i$ for the whole space.
- 5.4.3 (a) Since $T: V \to V$ is linear, clearly $T(\{0\}) = \{0\}$ and $T(V) \subseteq V$.

- (b) Given $x \in N(T)$ we have $Tx = 0 \in N(T)$. Given $y \in R(T)$ we have $Ty \in R(T)$ by definition of the range.
- (c) Given $v \in E_{\lambda}$, we have $Tv = \lambda v \in E_{\lambda}$.
- 5.4.18 (a) Given any $x \in W$, we can find scalars c_0, \ldots, c_k so that $x = c_0 v + c_1 T v + \cdots + c_k T^k v$. Then

$$Tx = c_0 Tv + c_1 T^2 v + \dots + c_k T^{k+1} v$$

which is also a linear combination of vectors of the form $T^{j}v$. Hence $Tx \in W$.

- (b) Let S be a T-invariant subspace of V containing v. An inductive argument shows that every iterate $T^{j}v$ is in S; indeed, $T^{0}v = v \in S$ and whenever $T^{j}v \in S$ we must also have $T^{j+1}v = T(T^{j}v) \in S$ by virtue of T-invariance. Since S is a space, it must contain the span of the iterates $T^{j}v$, which is precisely the space W.
- 5.4.21 Let V be a two-dimensional space and $T: V \to V$. There are two possibilities that can occur: either $\{x, Tx\}$ is linearly independent for some vector $x \in V$, or $\{x, Tx\}$ is always linearly dependent. In the former situation we'd have that V is the T-cyclic space generated by x, so we'd be done. Hence we assume that $\{x, Tx\}$ is linearly dependent for every vector $x \in V$. We will show in this case that T = cI for some scalar c; that is, for some fixed scalar c every vector $x \in V$ satisfies Tx = cx. This is clearly true for x = 0, so from here on we only consider nonzero vectors x.

Given a nonzero vector $x \in V$, the linear dependence of the set $\{x, Tx\}$ means we can find scalars c_1 and c_2 — not both zero — so that

$$c_1 x + c_2 T x = 0.$$

If $c_2 = 0$ then $c_1 \neq 0$ and we must have x = 0. Since we wanted to exclude this case, we cannot have $c_2 = 0$. Dividing by c_2 , we see that

$$Tx = -(c_1/c_2)x.$$

Rewriting $-c_1/c_2 = c$, we find that every vector $x \in V$ satisfies an eigenvalue equation Tx = cx. We do not yet know, however, that the same scalar c works for all vectors.

Consider nonzero vectors $x, y \in V$ and find scalars a, b so that Tx = ax and Ty = by. If we show that a = b, then we're done. To this end, we can assume that x and y are not scalar multiples of each other; that is, assume that $\{x, y\}$ is linearly independent. The vector x + y also satisfies an eigenvalue equation of the form T(x + y) = c(x + y), but linearity yields

$$c(x+y) = T(x+y) = Tx + Ty = ax + by.$$

so that (c-a)x + (c-b)y = 0. The linear independence of $\{x, y\}$ implies that a = b, as desired.

6.1.10 Assuming that x and y are orthogonal vectors in an inner product space V, we have

$$\|x+y\|^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle = \langle x, x \rangle + \langle y, y \rangle = \|x\|^2 + \|y\|^2.$$

The standard inner product in \mathbb{R}^2 yields the Pythagorean theorem.

6.1.17 Let T be a linear operator on an inner product space V satisfying ||Tx|| = ||x|| for all $x \in V$ (such an operator is typically called an isometry). If $x \in V$ is chosen so that Tx = 0, then ||x|| = ||Tx|| = 0, so x = 0 as well. That is, the null space of T is trivial, so T is injective.

Homework 4

6.2.6 Given a vector $x \notin W$ we can use theorem 6.6 to write x = w + z, with $w \in W$ and $z \in W^{\perp}$. If z were zero then we would have $x = w \in W$, so $z \neq 0$. Notice that $z \in W^{\perp}$ and

$$\langle x, z \rangle = \langle w + z, z \rangle = \langle w, z \rangle + \langle z, z \rangle = 0 + ||z||^2 \neq 0.$$

6.2.11 Given $i, j \in \{1, 2, \ldots, n\}$ the component formula for matrix multiplication gives

$$(AA^*)_{ij} = \sum_{k=1}^n A_{ik} (A^*)_{kj} = \sum_{k=1}^n A_{ik} \overline{A}_{jk}$$

This last expression is the inner product of rows i and j; thus if the rows of AA^* are orthonormal, we have $(AA^*)_{ij} = 0$ when $i \neq j$ and $(AA^*)_{ii} = 1$. That is, $AA^* = I$. Conversely if $AA^* = I$ then the rows are orthonormal by the same argument in reverse.

- 6.2.13 (a) Assume that $S_0 \subseteq S$ and let $y \in S^{\perp}$. Given an arbitrary $x \in S_0$ we have $x \in S$, so $\langle x, y \rangle = 0$. Thus $y \in S_0^{\perp}$ and we conclude $S^{\perp} \subseteq S_0^{\perp}$.
 - (b) Given $x \in S$ note that x is orthogonal to every element of S^{\perp} . But then $x \in (S^{\perp})^{\perp}$. Since the orthogonal complement of any set is a space, this implies $\operatorname{span}(S) \subseteq (S^{\perp})^{\perp}$.
 - (c) It remains to show that $(W^{\perp})^{\perp} \subseteq W$. Suppose that $x \notin W$; by problem 6.2.6 there exists $y \in W^{\perp}$ with $\langle x, y \rangle \neq 0$. That is, x is not orthogonal to some element of W^{\perp} and $x \notin (W^{\perp})^{\perp}$.
 - (d) By theorem 6.6 any vector in V can be written as a sum of the form w + z, with $w \in W$ and $z \in W^{\perp}$. Hence $V = W + W^{\perp}$. Suppose that $y \in W \cap W^{\perp}$. Since $y \in W^{\perp}$, it must be orthogonal to every element of W; in particular $\langle y, y \rangle = 0$. This implies y = 0, so $W \cap W^{\perp} = \{0\}$. We conclude that $V = W \oplus W^{\perp}$.
- 6.3.7 Consider \mathbb{R}^2 with the standard inner product and standard basis $\{e_1, e_2\}$. Define the linear operator $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(e_1) = 0$ and $T(e_2) = e_1$. Notice that $e_2 \notin N(T)$; we'll show that $e_2 \in N(T^*)$. We compute $\langle e_1, T^*e_2 \rangle = \langle Te_1, e_2 \rangle = 0$ and $\langle e_2, T^*e_2 \rangle = \langle Te_2, e_2 \rangle = \langle e_1, e_2 \rangle = 0$. Since T^*e_2 is orthogonal to both vectors in the basis, $T^*e_2 = 0$. Thus $N(T) \neq N(T^*)$.
- 6.3.9 Let $x \in V$ be arbitrary; we want to show that $T^*x Tx = 0$. Since $V = W \oplus W^{\perp}$ by assumption, we can write $T^*x Tx = w + z$ with $w \in W$ and $z \in W^{\perp}$. Note that

$$||T^*x - Tx||^2 = \langle T^*x - Tx, T^*x - Tx \rangle = \langle T^*x - Tx, w \rangle + \langle T^*x - Tx, z \rangle,$$

so we need only show that each inner product on the right vanishes. For the first product, we make two observations: $w \in W$ implies Tw = w and $x - Tx \in W^{\perp}$. With these in mind we have

$$\langle T^*x - Tx, w \rangle = \langle T^*x, w \rangle - \langle Tx, w \rangle = \langle x, Tw \rangle - \langle Tx, w \rangle = \langle x, w \rangle - \langle Tx, w \rangle = \langle x - Tx, w \rangle = 0.$$

For the second product, note that since $z \in W^{\perp}$ we have both Tz = 0 and $\langle Tx, z \rangle = 0$. This gives

$$\langle T^*x - Tx, z \rangle = \langle T^*x, z \rangle - \langle Tx, z \rangle = \langle x, Tz \rangle - 0 = 0$$

We conclude that $T^*x - Tx = 0$; as x was arbitrary, $T = T^*$.

6.3.12 (a) Let $x \in R(T^*)^{\perp}$. Then for any vector $y \in V$ we have $\langle x, T^*y \rangle = 0$. Choosing y = Tx gives

$$0 = \langle x, T^*Tx \rangle = \langle Tx, Tx \rangle = ||Tx||^2,$$

so Tx = 0. That is, $x \in N(T)$ and $R(T^*)^{\perp} \subseteq N(T)$. Now suppose that $x \in N(T)$ and $T^*y \in R(T^*)$ is arbitrary. Then

$$\langle x, T^*y \rangle = \langle Tx, y \rangle = 0,$$

so $x \in R(T^*)^{\perp}$. We conclude that $N(T) \subseteq R(T^*)^{\perp}$, whence the spaces are equal.

(b) From exercise 6.2.13 we know that in a finite-dimensional space, $(W^{\perp})^{\perp} = W$ for any subspace W. Using the previous part gives

$$N(T)^{\perp} = (R(T^*)^{\perp})^{\perp} = R(T^*),$$

as desired.

Homework 5

- 6.4.1 (a) True.
 - (b) False. Consider the map $T : \mathbb{R}^2 \to \mathbb{R}^2$ with $T(e_1) = 0$ and $T(e_2) = e_1$. You can show that $T^*(e_1) = e_2$ and $T(e_2) = 0$. That is, e_1 is an eigenvector of T with eigenvalue 0, but not for T^* .
 - (c) False. This only holds for orthonormal bases β .
 - (d) True.
 - (e) True.
 - (f) True.
 - (g) False; if the underlying field is real, self-adjointness is needed.
 - (h) True.
- 6.4.7 (a) Let $u, v \in W$. Then

$$\langle T_W u, v \rangle_W = \langle T u, v \rangle = \langle u, T v \rangle = \langle u, T_W v \rangle_W$$

Hence T_W is self-adjoint.

(b) Let $v \in W^{\perp}$. Given $u \in W$ we have

$$\langle T^*v, u \rangle = \langle v, Tu \rangle = 0,$$

since $Tu \in W$. Thus $T^*v \in W^{\perp}$ and W^{\perp} is T^* -invariant.

(c) Let $u, v \in W$. Then

$$\langle u, (T_W)^* v \rangle_W = \langle T_W u, v \rangle_W = \langle T u, v \rangle = \langle u, T^* v \rangle = \langle u, (T^*)_W v \rangle_W.$$

Thus $[(T_W)^* - (T^*)_W]v$ an element of $W \cap W^{\perp} = \{0\}$.

- (d) Using the previous part, $T_W(T_W)^* = T_W(T^*)_W = (TT^*)_W$. Similarly $(T_W)^*T_W = (T^*T)_W$. The result follows from the assumption that $TT^* = T^*T$.
- 6.4.11 (a) Let $x \in V$ and note that

$$\langle Tx, x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}.$$

Hence $\langle Tx, x \rangle$ equals its complex conjugate and is real.

(b) Let $x, y \in V$ and note that

$$0 = \langle T(x+y), x+y \rangle$$

= $\langle Tx, x \rangle + \langle Tx, y \rangle + \langle Ty, x \rangle + \langle Ty, y \rangle$
= $\langle Tx, y \rangle + \langle y, Tx \rangle$
= $2 \operatorname{Re} \langle Tx, y \rangle$,

so $\langle Tx, x \rangle$ is purely imaginary. However we can also expand

$$0 = \langle T(x+iy), x+iy \rangle$$

= $\langle Tx, x \rangle + \langle Tx, iy \rangle + \langle Tiy, x \rangle + \langle Tiy, iy \rangle$
= $-i \langle Tx, y \rangle + i \langle y, Tx \rangle$
= $2 \text{Im} \langle Tx, y \rangle$,

whence $\langle Tx, y \rangle$ has zero imaginary part as well. Thus $\langle Tx, y \rangle = 0$ for any x, y; choosing y = Tx shows Tx = 0. As x was arbitrary, T = 0.

(c) Let $x \in V$ and compute

$$\langle (T - T^*)x, x \rangle = \langle Tx, x \rangle - \langle T^*x, x \rangle = \langle Tx, x \rangle - \langle x, Tx \rangle$$

Since $\langle Tx, x \rangle \in \mathbb{R}$, this last expression is zero. By the previous part, knowing that $\langle (T-T^*)x, x \rangle = 0$ for all x implies that $T = T^*$.

6.5.6 Let $f, g \in V$ and write

$$\langle Tf,g\rangle = \int_0^1 (Tf)(t)\overline{g(t)}\,dt = \int_0^1 h(t)f(t)\overline{g(t)}\,dt = \int_0^1 f(t)\overline{\overline{h(t)}g(t)}\,dt = \langle f,\overline{h}g\rangle.$$

From this we see that $T^*g = \overline{h}g$. Then $TT^*f = T^*Tf = |h|^2 f$; this is the identity if and only if |h| = 1. 6.5.7 Choose an orthonormal ordered basis so that

$$[T]_{\beta} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0\\ 0 & \lambda_2 & \cdots & 0\\ & & \ddots & \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

Since T is unitary, each λ_k has modulus 1 and hence has a square root of modulus 1 (for those unfamiliar with complex arithmetic, a number has absolute value 1 if and only if it can be written as e^{it} with $t \in \mathbb{R}$; then $e^{it/2}$ has modulus one and squares to e^{it}). Defining U as

$$[U]_{\beta} = \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0\\ 0 & \sqrt{\lambda_2} & \cdots & 0\\ & & \ddots & \\ 0 & 0 & \cdots & \sqrt{\lambda_n} \end{pmatrix}$$

gives the required square root of T.

6.5.10 We need the fact that similar matrices have equal traces. With this in hand, we can diagonalize A; in diagonal form the nonzero entries are the eignevalues and clearly tr(A) is their sum.

Furthermore, having diagonalized A we have that

$$PAP^{*} = \begin{pmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ & & \ddots \\ 0 & 0 & \cdots & \lambda_{n} \end{pmatrix} \quad \text{and} \quad PA^{*}P^{*} = \begin{pmatrix} \overline{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & \overline{\lambda_{2}} & \cdots & 0 \\ & & \ddots \\ 0 & 0 & \cdots & \overline{\lambda_{n}} \end{pmatrix}$$

From this it follows that

$$PA^*AP^* = \begin{pmatrix} |\lambda_1|^2 & 0 & \cdots & 0\\ 0 & |\lambda_2|^2 & \cdots & 0\\ & & \ddots & \\ 0 & 0 & \cdots & |\lambda_n|^2 \end{pmatrix}.$$

Clearly then $tr(A^*A) = \sum |\lambda_k|^2$.

Homework 6

- 6.6.1 (a) False. Only orthogonal projections are self-adjoint.
 - (b) True.
 - (c) True. (The Spectral Theorem)
 - (d) False. Only true for orthogonal projections.
 - (e) False. Most projections aren't invertible, let alone unitary.
- 6.6.4 Since W is finite dimensional, we have that $V = W \oplus W^{\perp}$. By definition of T, whenever $x \in W$ and $y \in W^{\perp}$, we have T(x + y) = x. But then (I T)(x + y) = y. The finite dimensionality of W implies that $(W^{\perp})^{\perp} = W$, so I T is an orthogonal projection derived from the direct sum $V = W^{\perp} \oplus (W^{\perp})^{\perp}$.
- 6.6.6 We've seen many times that for any projection T, the space decomposes as $V = R(T) \oplus N(T)$. Assume that T is normal; to show that T is an orthogonal projection, we need only show that $N(T) = R(T)^{\perp}$. Let $x \in N(T)$ and consider arbitrary $y \in R(T)$. Then y = Ty and

$$\langle x, y \rangle = \langle x, Ty \rangle = \langle T^*x, y \rangle = 0,$$

since $Tx = 0x \Leftrightarrow T^*x = \overline{0}x = 0$. Next assume that $v \in R(T)^{\perp}$. Then

$$\langle Tv, Tv \rangle = \langle v, T^*Tv \rangle = \langle v, TT^*v \rangle = 0,$$

since we've previously shown that $R(T)^{\perp} = N(T^*)$. Hence Tv = 0 and $v \in N(T)$.

Homework 7

- 6.7.13 Assume that A is positive semidefinite. The eigenvalues of A^*A are σ_i^2 , where σ_i denotes the singular values of A. Part of the definition of positive definiteness requires A to be self-adjoint, so A^2 has eigenvalues σ_i^2 . If λ_i denotes an eigenvalue of A, we know that λ_i^2 is an eigenvalue of A^2 ; after rearranging the lists, we have $\lambda_i^2 = \sigma_i^2$ for each *i*. Finally, the eigenvalues and singular values of a positive semidefinite matrix are nonnegative, so we conclude that $\sigma_i = \lambda_i$ for each *i*.
- 6.7.15 (a) (\Rightarrow) Assume that A is normal, and consider the polar decomposition A = WP with W unitary and P positive semidefinite. Then

$$P^*W^*WP = (WP)^*WP = A^*A = AA^* = WP(WP)^* = WPP^*W^*$$

By definition we assume that positive operators are self-adjoint, so $P^* = P$. Furthermore, $WW^* = W^*W = I$, so we have

$$P^2 = WP^2W^*.$$

Multiplying on the right by W gives the result. (\Leftarrow) Assume that $WP^2 = P^2W$ and note that

$$A^*AW = P^*W^*WPW = P^2W = WP^2 = WP^2W^*W = AA^*W.$$

Multiplying by W^* on the right gives $AA^* = A^*A$.

(b) (\Rightarrow) Assume that A is normal. By the previous part, $WP^2 = P^2W$, which rearranges into

$$P^{2} = W^{*}P^{2}W = W^{*}P(WW^{*})PW = (W^{*}PW)^{2}.$$

Since W^*PW is unitarily equivalent to P, it is also positive semidefinite. Positive semidefinite operators admit square roots, so the above equation becomes $P = W^*PW$, which is equivalent to WP = PW.

 (\Leftarrow) Assume that WP = PW. Then $WP^2 = PWP = P^2W$, so A is normal by the previous part.

6.8.7 (a) Given $H \in \mathcal{B}(W)$, the domain of $\widehat{T}H$ is certainly $V \times V$. For bilinearity, we check the first argument:

$$\begin{split} \widehat{T}H(ax+y,z) &= H(T(ax+y),Tz) = H(aTx+Ty,Tz) \\ &= aH(Tx,Tz) + H(Ty,Tz) \\ &= a\widehat{T}H(x,z) + \widehat{T}H(y,z) \end{split}$$

holds for any $x, y, z \in V$ and scalar *a*. Hence $\widehat{T}H$ is linear in the first argument; the same reasoning shows $\widehat{T}H$ to be linear in its second argument, so we conclude that $\widehat{T}H \in \mathcal{B}(V)$.

(b) This is similar to the previous part. Given bilinear forms $H, J \in \mathcal{B}(W)$ and a scalar a, we have

$$\begin{split} \widehat{T}(aH+J)(x,y) &= (aH+J)(Tx,Ty) = aH(Tx,Ty) + J(Tx,Ty) \\ &= a\widehat{T}H(x,y) + \widehat{T}J(x,y) \end{split}$$

for any $x, y \in V$. Hence \widehat{T} is linear.

~

(c) We could show that \widehat{T} is bijective, but instead we can construct an obvious inverse map. Note that

$$\widehat{TT^{-1}}H(x,y) = H(TT^{-1}x,TT^{-1}y) = H(x,y)$$
$$\widehat{T^{-1}}\widehat{T}H(x,y) = H(T^{-1}Tx,T^{-1}Ty) = H(x,y),$$

so $\widehat{T^{-1}}$ is an inverse map of \widehat{T} , proving \widehat{T} to be invertible.