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Part I

1. A linear operator T on a space V is a projection if T 2 = T .
True

2. The eigenvalues of a diagonalizable operator are nonzero.
False; the zero operator is diagonal and has all eigenvalues zero

3. 〈z, w〉 = zw defines an inner product on C.
True

4. Every linear operator on a finite dimensional space has an adjoint.
True; T ∗ can be constructed via the rule 〈Tx, y〉 = 〈x, T ∗y〉

5. Unitary operators are normal.
True; a unitary operator has inverse equal to its adjoint, and an invertible operator commute with its
inverse

Part II

1. If T is a linear operator on V with characteristic polynomial p(t) = 2t5 + t3 − 1, prove that T−1 =
2T 4 + T 2.

Proof. By the Cayley–Hamilton theorem, p(T ) = 0; that is, 2T 5 + T 3 − I = 0. Since p(0) = −1 6= 0,
the operator T is invertible. Multiplying the equation by T−1 gives

0 = T−1(2T 5 + T 3 − I) = 2T 4 + T 2 − T−1,

which rearranges into the result.

2. Let T be a linear operator on a finite dimensional inner product space V with ‖Tx‖ = ‖x‖ for all
x ∈ V . Prove that T is an isomorphism.

Proof. Suppose that x ∈ N(T ). Then ‖x‖ = ‖Tx‖ = 0, whence x = 0. Therefore the null space of T
is trivial and T is injective; from the finite dimensionality of V , this is enough to conclude that T is
an isomorphism.

3. Let T be a linear operator on a finite dimensional inner product space V with W a T–invarint subspace.
Prove that W⊥ is T–invariant or give a counterexample.



Proof. The statement is false. Let T : R2 → R2 be defined by

T

(
x
y

)
=

(
1 1
0 1

)(
x
y

)
.

Then T (1, 0) = (1, 0) ∈ W = span({(1, 0)}), so the x–axis is T–invariant. However (0, 1) ∈ W⊥, yet
T (0, 1) = (1, 1) /∈W⊥. So W⊥ is not T–invariant.

4. Let T be a linear operator on a finite dimensional inner product space V having an eigenvector with
eigenvalue λ. Prove that T ∗ has an eigenvector with eigenvalue λ.

Proof. The characteristic polynomials of T and T ∗ are given by

det(T − λI) = det((T − λI)∗) = det(T ∗ − λI).

Thus if λ is a root of det(T − λI) (that is, an eigenvalue of T ), then λ is a root of det(T − λI).

5. Determine whether T on V = M2×2(R) defined by T (A) = At is normal, self–adjoint, unitary, orthog-
onal, or none of these.

Proof. The inner product on V is 〈A,B〉 = tr(B∗A) = tr(BtA), since the undrlying field is real. Recall
two properties of trace: for any matrices M,N we have tr(M t) = tr(M) and tr(MN) = tr(NM). Thus
we have

〈TA,B〉 = tr(BtAt) = tr(AtBt) = tr((BA)t) = tr(BA) = tr((Bt)tA) = 〈A, TB〉.

Thus T is self–adjoint, hence normal. Furthermore, T 2(A) = (At)t = A, so T is its own inverse. As T
is its own adjoint as well, its adjoint is its inverse. That is, T is unitary. Finally, since the underlying
field is real we have T = T ∗ = T t and T is orthogonal as well.

6. Let T be a linear operator on a finite dimensional inner product space V with ‖Tx‖ = ‖x‖ for all
x ∈ V . Prove that T ∗ = T−1.

Proof. From a previous problem on the exam, T is invertible. Once we know that T ∗T = I, the
other order follows (because on a finite dimensional space, a one–sided inverse is two–sided). Let
U = I − T ∗T ; it suffices to show that Ux = 0 for arbitrary x ∈ V . We can write

〈Ux, x〉 = 〈x− T ∗Tx, x〉 = 〈x, x〉 − 〈x, T ∗Tx〉 = ‖x‖2 − 〈Tx, Tx〉 = 0,

by our assumption on the preservation of norm. Note that U is self adjoint: U∗ = (I − T ∗T )∗ =
I∗ − (T ∗T )∗ = I − T ∗(T ∗)∗ = I − T ∗T = U . Since the underlying vector space is finite dimensional,
U is diagonalizable. To show that U = 0, it suffices to show that each eigenvalue is zero (for then its
matrix in an appropriate basis will consist entirely of zeroes). This is easy; given an eigenvalue λ of U
with eigenvector v 6= 0, we have

λ〈v, v〉 = 〈λv, v〉 = 〈Uv, v〉 = 0.

Since 〈v, v〉 6= 0, this means λ = 0. Thus each eigenvalue is zero, U = 0 as well, and T ∗T = I.

7. Let T be a normal operator on a finite dimensional inner product space V with distinct eigenvalues
λ1, . . . , λk. Let Wi be the eigenspace corresponding to the eigenvalue λi. Let Ti be the orthogonal
projection onto Wi. Prove that I = T1 + · · ·+ Tk and T = λ1T1 + · · ·λkTk.



Proof. Assuming that the underlying field is complex, T is diagonalizable. That is, any v ∈ V can be
written as

v = x1 + x2 + · · ·+ xk,

with xi ∈ Wi for each 1 ≤ i ≤ k. For a normal operator, distinct eigenspaces are orthogonal, so the
orthogonal projections onto each eigenspace satisfy

Tiv = Ti(x1 + x2 + · · ·+ xk) = xi,

which implies that
v = T1v + T2v + · · ·+ Tkv = (T1 + · · ·+ Tk)v.

As v was arbitrary, we have I = T1 + · · ·Tk. Finally, we also have that

Tv = Tx1 + Tx2 + · · ·+ Txk = λ1x1 + · · ·+ λkxk = λ1T1v + · · ·λkTkv = (λ1T1 + · · ·+ λkTk)v.

As v is arbitrary, T = λ1T1 + · · ·+ λkTk.

8. Consider C[−1, 1], the vector space of continuous, real–valued functions on [−1, 1], equipped with the
inner product

〈f, g〉 =

∫ 1

−1
f(x)g(x)

dx√
1− x2

.

Let S = {1, x}. Show that S is orthogonal and find the orthogonal projection of f(x) = x2 onto
span(S).

Proof. The set S has only two elements, so we need only compute a single inner product to check
orthogonality:

〈1, x〉 =

∫ 1

−1

x√
1− x2

dx = 0,

since this is the integral of an odd function over an interval symmetric about zero.

To orthogonally project x2 onto span(S), we want to find scalars c1, c2 so that

x2 = c1 + c2x+ g(x),

with g(x) ∈ S⊥. Taking an inner product against 1 gives

〈1, x2〉 = c1〈1, 1〉+ c2〈1, x〉+ 〈1, g(x)〉 = c1〈1, 1〉,

since 〈1, x〉 = 〈1, g〉 = 0. We compute

〈1, x2〉 =

∫ 1

−1

x2√
1− x2

dx =

∫ π/2

−π/2
sin2 θ dθ =

π

2

〈1, 1〉 =

∫ 1

−1

1√
1− x2

dx =

∫ π/2

−π/2
dθ = π.

From this we find c1 = 1/2. Furthermore

c2 =
〈x, x2〉
〈x, x〉

=
1

〈x, x〉

∫ 1

−1

x3√
1− x2

dx = 0,

as once again we are integrating an odd function over a symmetric interval. Thus our orthogonal
projection of x2 onto span(S) is the constant function h(x) = 1/2.


