Math 108B Selected Homework Solutions

Charles Martin

February 26, 2013

Part I

1. A linear operator T on a space V is a projection if $T^{2}=T$. True
2. The eigenvalues of a diagonalizable operator are nonzero.

False; the zero operator is diagonal and has all eigenvalues zero
3. $\langle z, w\rangle=z \bar{w}$ defines an inner product on \mathbb{C}.

True
4. Every linear operator on a finite dimensional space has an adjoint.

True; T^{*} can be constructed via the rule $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$
5. Unitary operators are normal.

True; a unitary operator has inverse equal to its adjoint, and an invertible operator commute with its inverse

Part II

1. If T is a linear operator on V with characteristic polynomial $p(t)=2 t^{5}+t^{3}-1$, prove that $T^{-1}=$ $2 T^{4}+T^{2}$.

Proof. By the Cayley-Hamilton theorem, $p(T)=0$; that is, $2 T^{5}+T^{3}-I=0$. Since $p(0)=-1 \neq 0$, the operator T is invertible. Multiplying the equation by T^{-1} gives

$$
0=T^{-1}\left(2 T^{5}+T^{3}-I\right)=2 T^{4}+T^{2}-T^{-1}
$$

which rearranges into the result.
2. Let T be a linear operator on a finite dimensional inner product space V with $\|T x\|=\|x\|$ for all $x \in V$. Prove that T is an isomorphism.

Proof. Suppose that $x \in N(T)$. Then $\|x\|=\|T x\|=0$, whence $x=0$. Therefore the null space of T is trivial and T is injective; from the finite dimensionality of V, this is enough to conclude that T is an isomorphism.
3. Let T be a linear operator on a finite dimensional inner product space V with W a T-invarint subspace. Prove that W^{\perp} is T-invariant or give a counterexample.

Proof. The statement is false. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
T\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y}
$$

Then $T(1,0)=(1,0) \in W=\operatorname{span}(\{(1,0)\})$, so the x-axis is T-invariant. However $(0,1) \in W^{\perp}$, yet $T(0,1)=(1,1) \notin W^{\perp}$. So W^{\perp} is not T-invariant.
4. Let T be a linear operator on a finite dimensional inner product space V having an eigenvector with eigenvalue λ. Prove that T^{*} has an eigenvector with eigenvalue $\bar{\lambda}$.

Proof. The characteristic polynomials of T and T^{*} are given by

$$
\operatorname{det}(T-\lambda I)=\operatorname{det}\left((T-\lambda I)^{*}\right)=\operatorname{det}\left(T^{*}-\bar{\lambda} I\right)
$$

Thus if λ is a root of $\operatorname{det}(T-\lambda I)$ (that is, an eigenvalue of $T)$, then $\bar{\lambda}$ is a $\operatorname{root} \operatorname{of} \operatorname{det}(T-\bar{\lambda} I)$.
5. Determine whether T on $V=M_{2 \times 2}(\mathbb{R})$ defined by $T(A)=A^{t}$ is normal, self-adjoint, unitary, orthogonal, or none of these.

Proof. The inner product on V is $\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right)=\operatorname{tr}\left(B^{t} A\right)$, since the undrlying field is real. Recall two properties of trace: for any matrices M, N we have $\operatorname{tr}\left(M^{t}\right)=\operatorname{tr}(M)$ and $\operatorname{tr}(M N)=\operatorname{tr}(N M)$. Thus we have

$$
\langle T A, B\rangle=\operatorname{tr}\left(B^{t} A^{t}\right)=\operatorname{tr}\left(A^{t} B^{t}\right)=\operatorname{tr}\left((B A)^{t}\right)=\operatorname{tr}(B A)=\operatorname{tr}\left(\left(B^{t}\right)^{t} A\right)=\langle A, T B\rangle .
$$

Thus T is self-adjoint, hence normal. Furthermore, $T^{2}(A)=\left(A^{t}\right)^{t}=A$, so T is its own inverse. As T is its own adjoint as well, its adjoint is its inverse. That is, T is unitary. Finally, since the underlying field is real we have $T=T^{*}=T^{t}$ and T is orthogonal as well.
6. Let T be a linear operator on a finite dimensional inner product space V with $\|T x\|=\|x\|$ for all $x \in V$. Prove that $T^{*}=T^{-1}$.

Proof. From a previous problem on the exam, T is invertible. Once we know that $T^{*} T=I$, the other order follows (because on a finite dimensional space, a one-sided inverse is two-sided). Let $U=I-T^{*} T$; it suffices to show that $U x=0$ for arbitrary $x \in V$. We can write

$$
\langle U x, x\rangle=\left\langle x-T^{*} T x, x\right\rangle=\langle x, x\rangle-\left\langle x, T^{*} T x\right\rangle=\|x\|^{2}-\langle T x, T x\rangle=0
$$

by our assumption on the preservation of norm. Note that U is self adjoint: $U^{*}=\left(I-T^{*} T\right)^{*}=$ $I^{*}-\left(T^{*} T\right)^{*}=I-T^{*}\left(T^{*}\right)^{*}=I-T^{*} T=U$. Since the underlying vector space is finite dimensional, U is diagonalizable. To show that $U=0$, it suffices to show that each eigenvalue is zero (for then its matrix in an appropriate basis will consist entirely of zeroes). This is easy; given an eigenvalue λ of U with eigenvector $v \neq 0$, we have

$$
\lambda\langle v, v\rangle=\langle\lambda v, v\rangle=\langle U v, v\rangle=0
$$

Since $\langle v, v\rangle \neq 0$, this means $\lambda=0$. Thus each eigenvalue is zero, $U=0$ as well, and $T^{*} T=I$.
7. Let T be a normal operator on a finite dimensional inner product space V with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. Let W_{i} be the eigenspace corresponding to the eigenvalue λ_{i}. Let T_{i} be the orthogonal projection onto W_{i}. Prove that $I=T_{1}+\cdots+T_{k}$ and $T=\lambda_{1} T_{1}+\cdots \lambda_{k} T_{k}$.

Proof. Assuming that the underlying field is complex, T is diagonalizable. That is, any $v \in V$ can be written as

$$
v=x_{1}+x_{2}+\cdots+x_{k}
$$

with $x_{i} \in W_{i}$ for each $1 \leq i \leq k$. For a normal operator, distinct eigenspaces are orthogonal, so the orthogonal projections onto each eigenspace satisfy

$$
T_{i} v=T_{i}\left(x_{1}+x_{2}+\cdots+x_{k}\right)=x_{i}
$$

which implies that

$$
v=T_{1} v+T_{2} v+\cdots+T_{k} v=\left(T_{1}+\cdots+T_{k}\right) v
$$

As v was arbitrary, we have $I=T_{1}+\cdots T_{k}$. Finally, we also have that

$$
T v=T x_{1}+T x_{2}+\cdots+T x_{k}=\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k}=\lambda_{1} T_{1} v+\cdots \lambda_{k} T_{k} v=\left(\lambda_{1} T_{1}+\cdots+\lambda_{k} T_{k}\right) v
$$

As v is arbitrary, $T=\lambda_{1} T_{1}+\cdots+\lambda_{k} T_{k}$.
8. Consider $C[-1,1]$, the vector space of continuous, real-valued functions on $[-1,1]$, equipped with the inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) \frac{d x}{\sqrt{1-x^{2}}}
$$

Let $S=\{1, x\}$. Show that S is orthogonal and find the orthogonal projection of $f(x)=x^{2}$ onto $\operatorname{span}(S)$.

Proof. The set S has only two elements, so we need only compute a single inner product to check orthogonality:

$$
\langle 1, x\rangle=\int_{-1}^{1} \frac{x}{\sqrt{1-x^{2}}} d x=0
$$

since this is the integral of an odd function over an interval symmetric about zero.
To orthogonally project x^{2} onto $\operatorname{span}(S)$, we want to find scalars c_{1}, c_{2} so that

$$
x^{2}=c_{1}+c_{2} x+g(x)
$$

with $g(x) \in S^{\perp}$. Taking an inner product against 1 gives

$$
\left\langle 1, x^{2}\right\rangle=c_{1}\langle 1,1\rangle+c_{2}\langle 1, x\rangle+\langle 1, g(x)\rangle=c_{1}\langle 1,1\rangle
$$

since $\langle 1, x\rangle=\langle 1, g\rangle=0$. We compute

$$
\begin{aligned}
\left\langle 1, x^{2}\right\rangle & =\int_{-1}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x=\int_{-\pi / 2}^{\pi / 2} \sin ^{2} \theta d \theta=\frac{\pi}{2} \\
\langle 1,1\rangle & =\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} d x=\int_{-\pi / 2}^{\pi / 2} d \theta=\pi
\end{aligned}
$$

From this we find $c_{1}=1 / 2$. Furthermore

$$
c_{2}=\frac{\left\langle x, x^{2}\right\rangle}{\langle x, x\rangle}=\frac{1}{\langle x, x\rangle} \int_{-1}^{1} \frac{x^{3}}{\sqrt{1-x^{2}}} d x=0
$$

as once again we are integrating an odd function over a symmetric interval. Thus our orthogonal projection of x^{2} onto $\operatorname{span}(S)$ is the constant function $h(x)=1 / 2$.

