Math 118B Solutions

Charles Martin

March 6, 2012

Homework Problems

1. Let $\left(X_{i}, d_{i}\right), 1 \leq i \leq n$, be finitely many metric spaces. Construct a metric on the product space $X=$ $X_{1} \times \cdots \times X_{n}$.

Proof. Denote points in X as $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Given $x, y \in X$ define $d(x, y)=d_{1}\left(x_{1}, y_{1}\right)+\cdots+$ $d\left(x_{n}, y_{n}\right)$. Then clearly $d(x, y) \geq 0$ and $d(x, y)=d(y, x)$. Furthermore, if $d(x, y)=0$ then each $d_{i}\left(x_{i}, y_{i}\right)=$ 0 . That is, each $x_{i}=y_{i}$ and $x=y$. Finally, given $x, y, z \in X$ we have

$$
d(x, z)=\sum_{i=1}^{n} d_{i}\left(x_{i}, z_{i}\right) \leq \sum_{i=1}^{n} d_{i}\left(x_{i}, y_{i}\right)+d_{i}\left(y_{i}, z_{i}\right)=d(x, y)+d(y, z)
$$

Hence d is a metric on X.
2. Let (X, d) be a metric space. Prove that

$$
\delta(x, y)=\frac{d(x, y)}{1+d(x, y)} ; \quad x, y \in X
$$

is also a metric on X.
Proof. Clearly we have that $\delta(x, y)=\delta(y, x)$ and $\delta(x, y) \geq 0$. If $\delta(x, y)=0$, then $d(x, y)=0$ and $x=y$. Finally, given $x, y, z \in X$ we have

$$
\begin{aligned}
\delta(x, z) & =\frac{d(x, z)}{1+d(x, z)} \\
& =1-\frac{1}{1+d(x, z)} \\
& \leq 1-\frac{1}{1+d(x, y)+d(y, z)} \\
& =\frac{d(x, y)+d(y, z)}{1+d(x, y)+d(y, z)} \\
& =\frac{d(x, y)}{1+d(x, y)+d(y, z)}+\frac{d(y, z)}{1+d(x, y)+d(y, z)} \\
& \leq \frac{d(x, y)}{1+d(x, y)}+\frac{d(y, z)}{1+d(y, z)} \\
& =\delta(x, y)+\delta(y, z)
\end{aligned}
$$

Hence δ is a metric on X.
3. Prove that the space ℓ_{∞} of bounded sequences is complete with respect to the $\|\cdot\|_{\infty}$ distance. Let c, c_{0} denote the subspaces of ℓ_{∞} of convergent, respectively, convergent to zero, sequences. Prove that c, c_{0} are closed subspaces of ℓ_{∞}.

Proof. This is a bit of a notational challenge. Let $x_{1}, x_{2}, x_{3} \ldots$ be a sequence of points within ℓ_{∞}, each of which is itself a sequence of real numbers. That is, for each $i \geq 1$ we have that

$$
x_{i}=\left(x_{i 1}, x_{i 2}, x_{i 3}, \ldots\right)
$$

Suppose that the sequence $\left(x_{i}\right)$ is Cauchy in ℓ_{∞}. Then for each $i, m, n \geq 1$ we have

$$
\left|x_{i m}-x_{i n}\right| \leq \sup _{i}\left|x_{i m}-x_{i n}\right|=\left\|x_{m}-x_{n}\right\|_{\infty} \rightarrow 0
$$

as $m, n \rightarrow \infty$. That is, each sequence of real numbers $x_{i 1}, x_{i 2}, \ldots$ is Cauchy in \mathbb{R}, hence convergent. Let $y_{i}=\lim x_{i n}$ and consider the sequence $y=\left(y_{i}\right)$.

Let $\epsilon>0$. Find N (depending only upon ϵ) so that for all $m, n \geq N$ we have $\left\|x_{n}-x_{m}\right\|_{\infty}<\epsilon / 2$. For each k this implies that $\left|x_{n k}-x_{m k}\right|<\epsilon / 2$. If we take $m \rightarrow \infty$ then $x_{m k} \rightarrow y_{k}$ and we have that $\left|x_{n k}-y_{k}\right| \leq \epsilon / 2$ for all $k \geq 1$. Taking the supremum over k gives $\left\|x_{n}-y\right\|_{\infty} \leq \epsilon / 2<\epsilon$. This shows that $\left\|x_{n}-y\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$. We should also verify that $y \in \ell_{\infty}$; if n is such that $\left\|x_{n}-y\right\|_{\infty}<1$ then

$$
\|y\|_{\infty}=\left\|x_{n}+\left(x_{n}-y\right)\right\|_{\infty}<\left\|x_{n}\right\|_{\infty}+1<\infty
$$

so indeed $y \in \ell_{\infty}$.
Now we turn our attention to c and c_{0}; since convergent sequences are bounded we have that $c, c_{0} \subset \ell_{\infty}$. It is clear that c, c_{0} are both subspaces, so we'll only show that they are both closed. Suppose that $\left(x_{n}\right)$ is a sequence in c which converges to some point $y \in \ell_{\infty}$. We wish to show that $y \in c$. Let $\epsilon>0$ and find n so that $\left\|x_{n}-y\right\|_{\infty}<\epsilon / 3$. Now find M so that for all $j, k \geq M$ we have $\left|x_{n j}-x_{n k}\right|<\epsilon / 3$. For all such j, k we have

$$
\begin{aligned}
\left|y_{j}-y_{k}\right| & \leq\left|y_{j}-x_{n j}\right|+\left|x_{n j}-x_{n k}\right|+\left|x_{n k}-y_{k}\right| \\
& \leq\left\|y-x_{n}\right\|_{\infty}+\left|x_{n j}-x_{n k}\right|+\left\|y-x_{k}\right\|_{\infty} \\
& <\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3} \\
& =\epsilon .
\end{aligned}
$$

So y is a Cauchy sequence of real numbers, hence convergent. That is, $y \in c$.
Now suppose that $\left(x_{n}\right)$ is a sequence in c_{0} which converges to some $y \in \ell_{\infty}$. Since $c_{0} \subset c$, the above reasoning shows that $y \in c$; we need only show that $\lim y=0$. Let $\epsilon>0$ and take n so that $\left\|y-x_{n}\right\|_{\infty}<\epsilon / 2$. Then for each k we have $\left|y_{k}-x_{n k}\right|<\epsilon / 2$. Find M so that for all $k \geq M$ we have $\left|x_{n k}\right|<\epsilon / 2$; for all such k we have

$$
\left|y_{k}\right| \leq\left|y_{k}-x_{n k}\right|+\left|x_{n k}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
$$

So $\lim y=0$ as desired.
4. Describe the intervals $[0, a] \subset \mathbb{R}$ such that the function $f:[0, a] \rightarrow[0, a], f(x)=\sin x$, is contractive.

Proof. Let $a>0$. Suppose there exists a $c<1$ so that for all $x, y \in[0, a]$,

$$
|\sin x-\sin y| \leq c|x-y|
$$

Let $x \in(0, a]$ and note that

$$
\frac{|\sin x-\sin 0|}{|x-0|}<c .
$$

But if we take $x \rightarrow 0$, we have that $1 \leq c$, a contradiction. Upon no such interval is the sine function contractive.
5. Let A be a bounded subset of $C[0,1]$. Prove that the set of functions

$$
F(x)=\int_{0}^{x} f(t) d t, \quad f \in A
$$

is equicontinuous in $C[0,1]$.

Proof. For convenience denote

$$
\mathcal{F}=\left\{\int_{0}^{x} f(t) d t: f \in A\right\}
$$

Choose $M>0$ so that for each $f \in A$ we have $\|f\|_{\infty} \leq M$. Given $\epsilon>0$ set $\delta=\epsilon / M$. Whenever $x, y \in[0,1]$ are such that $|x-y|<\delta$ and $f \in A$, it follows that

$$
\left|\int_{0}^{x} f(t) d t-\int_{0}^{y} f(t) d t\right|=\left|\int_{y}^{x} f(t) d t\right| \leq M|x-y|<M \delta=\epsilon
$$

so we conclude that \mathcal{F} is equicontinuous.
6. Is the sequence of functions $\sin (n x), n \geq 1$, equicontinuous in $C[0,1]$?

Proof. Suppose that the sequence is equicontinuous. In particular, there exists a δ so that for any n and $x, y \in \mathbb{R}$ with $|x-y|<\delta$,

$$
|\sin n x-\sin n y|<1
$$

Let n be so large that $\pi / 2 n<\delta$. Then $|\pi / 2 n-0|<\delta$, yet

$$
|\sin (n \cdot \pi / 2 n)-\sin (n \cdot 0)|=1
$$

a contradiction. The family is not equicontinuous.
7. Start with $P_{0}=0$ and define for $n \geq 0$

$$
P_{n+1}(x)=P_{n}(x)+\frac{x^{2}-P_{n}^{2}(x)}{2}
$$

Prove that $P_{n}(x) \rightarrow|x|$ uniformly on $[-1,1]$.
Proof. We start by proving that $0 \leq P_{n}(x) \leq|x|$ for all $x \in[-1,1]$ and $n \geq 0$. This is true for $P_{0}(x)=0$, so assume it true for some $n \geq 0$. Then $x^{2}-P_{n}^{2}(x) \geq 0$ and $P_{n}(x) \geq 0$ implies that $P_{n+1}(x) \geq 0$. Further, notice that

$$
\begin{equation*}
|x|-P_{n+1}(x)=\left[|x|-P_{n}(x)\right]\left[1-\frac{|x|+P_{n}(x)}{2}\right] . \tag{1}
\end{equation*}
$$

Each factor on the right is positive since $P_{n} \leq|x|$ and $\left(|x|+P_{n}(x)\right) / 2 \leq|x| \leq 1$; thus $P_{n+1}(x) \leq|x|$. By induction $0 \leq P_{n}(x) \leq|x|$ for all $x \in[-1,1]$ and $n \geq 0$.
FIRST PROOF Define the functions $g_{n}(x)=|x|-P_{n}(x)$; we want to show that $g_{n} \rightarrow 0$ uniformly. Notice that

$$
g_{n+1}(x)=g_{n}(x)\left[1-\frac{|x|+P_{n}(x)}{2}\right] \leq g_{n}(x)\left[1-\frac{|x|}{2}\right]
$$

Since $g_{0}(x)=|x|$ we find that

$$
g_{n}(x) \leq|x|\left(1-\frac{|x|}{2}\right)^{n}
$$

We wish to bound the right side from above uniformly in x. It suffices to consider $x \geq 0$; define $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)=x\left(1-\frac{x}{2}\right)^{n}
$$

Since f is continuous on a compact interval, it attains an absolute maximum. To find candidates for the maximum, we need

$$
\begin{aligned}
0 & =\frac{d}{d x} \ln f(x) \\
& =\frac{1}{x}-\frac{n}{2-x} \\
& =\frac{2-x(n+1)}{x(2-x)} .
\end{aligned}
$$

The only relative maximum of f occurs at $x=2 /(n+1)$. Since $f(0)=0$ and $f(1)=2^{-n}$, the absolute maximum is at $x=2 /(n+1)$. Therefore

$$
g_{n}(x) \leq|x|\left(1-\frac{|x|}{2}\right)^{n} \leq f\left(\frac{2}{n+1}\right)=\frac{2}{n+1}\left(1-\frac{1}{n+1}\right)^{n}<\frac{2}{n+1}
$$

Thus $\left\|g_{n}\right\|_{\infty} \leq 2 /(n+1)$ and $g_{n} \rightarrow 0$ uniformly, as desired.
ALTERNATIVE PROOF Once we know that $0 \leq P_{n}(x) \leq|x|$ we see that

$$
P_{n+1}(x)=P_{n}(x)+\frac{x^{2}-P_{n}^{2}(x)}{2} \geq P_{n}(x)
$$

so for each x the sequence $\left(P_{n}(x)\right)$ is monotone and bounded by $|x|$, hence pointwise convergent. This limit function must be $|x|$; if we denote $P_{n}(x) \rightarrow L$ then

$$
L=L+\frac{x^{2}-L^{2}}{2}
$$

so $L=|x|$ because $L \geq 0$. Uniform convergence now follows from Dini's theorem:
Theorem (Dini). Let X be a compact metric space and suppose that

$$
f_{1} \geq f_{2} \geq f_{3} \geq \cdots
$$

are continuous real-valued functions which converge pointwise to a continuous function f. Then the convergence is uniform.

Proof of Dini's theorem. If we consider $f_{n}-f$, we have a monotone sequence of continuous functions which converge pointwise to 0 (from above); henceforth we'll assume the pointwise limit is 0 . If f_{n} does not converge uniformly to 0 , there exists $\epsilon>0$ and a subsequence $\left(f_{n_{k}}\right)$ so that $\left\|f_{n_{k}}\right\|_{\infty} \geq 2 \epsilon$ for all k. That is, we can find a sequence of points $\left(x_{n_{k}}\right)$ in X so that $f_{n_{k}}\left(x_{n_{k}}\right) \geq \epsilon$ for all k. Since X is compact there is a convergent subsequence of $\left(x_{n_{k}}\right)$; for simplicity, we'll not denote a new sequence and instead assume that $x_{n_{k}} \rightarrow x \in X$. Here's where we use monotonicity: fix j and note that for any $k>j$

$$
\epsilon \leq f_{n_{k}}\left(x_{n_{k}}\right) \leq f_{n_{j}}\left(x_{n_{k}}\right)
$$

If we take $k \rightarrow \infty$ then $f_{n_{j}}\left(x_{n_{k}}\right) \rightarrow f_{n_{j}}(x)$ by continuity; thus $f_{n_{j}}(x) \geq \epsilon$ for arbitrary j. Taking $j \rightarrow \infty$ we see that $f_{n_{j}}(x) \nrightarrow 0$, a contradiction.

The continuous functions $|x|-P_{n}(x)$ monotonically approach 0 pointwise from above, so the convergence is uniform by Dini's theorem.

Addendum Here's an even better proof of Dini's theorem!
Proof. Let $\epsilon>0$ and define for each $n \geq 0$ the set $U_{n}=\left\{x \in X: f_{n}(x)-f(x)<\epsilon\right\}$. Since each $f_{n}-f$ is continuous, each U_{n} is open. The monotonicity of the sequence $\left(f_{n}\right)$ implies that the sets U_{n} are nested: $U_{1} \subseteq U_{2} \subseteq U_{3} \subseteq \cdots$. At any $x \in X$ the sequence $\left(f_{n}(x)-f(x)\right)$ converges to 0 , so each x is in some U_{n}. That is, the sets U_{n} form an open cover of X; by compactness a finite subcover exists: $U_{1} \cup U_{2} \cup \cdots \cup U_{N}=X$. But the sets U_{n} are nested, so $U_{N}=X$ and for all $n \geq N$ we have $X=U_{N} \subseteq U_{n} \subseteq X$, whence $U_{n}=X$ as well. Translating out of set language, for all $n \geq N$ we have $f_{n}-f<\epsilon$ throughout X.
8. (a) Give an example of a continuous function $f:[1, \infty) \rightarrow[0, \infty)$ so that $\int_{1}^{\infty} f$ diverges but $\sum_{1}^{\infty} f$ converges.
(b) Give an example of a continuous function $f:[1, \infty) \rightarrow[0, \infty)$ so that $\int_{1}^{\infty} f$ converges but $\sum_{1}^{\infty} f$ diverges.

Proof. (a) Let f be a sawtooth function with $f(x)=|x|$ on $[-1 / 2,1 / 2]$, extended periodically. Then $\int f$ is the area of an infinite number of triangles, each of area $1 / 4$. Nevertheless $f(n)=0$ for each integer n, whence $\sum f$ converges.
(b) Let f be defined as

$$
f(x)= \begin{cases}2^{n}(x-n)+1 & \text { if } n-2^{-n} \leq x \leq n \\ 2^{n}(n-x)+1 & \text { if } n \leq x \leq n+2^{-n} \\ 0 & \text { otherwise }\end{cases}
$$

A picture is more illuminating; the graph of f is a sawtooth which is 1 at each integer, a narrow triangle near each integer, and 0 otherwise. The sum $\sum f$ diverges, yet each triangle has area 2^{-n}, so

$$
\int_{1}^{\infty} f(x) d x=\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1
$$

9. For which values of p, q are the integrals

$$
\int_{0}^{1} \frac{\sin x}{x^{p}} d x \quad \text { and } \quad \int_{0}^{1} \frac{(\sin x)^{q}}{x} d x
$$

convergent?
Proof. Answer: $p<2$ and $q>0$. Recall that $\sin x / x \rightarrow 1$ as $x \rightarrow 0$; extend $\sin x / x$ to a positive, continuous function f on the interval $[0,1]$. Let m, M be the infimum and supremum, respectively, of f on $[0,1]$. Notice that

$$
\int_{0}^{1} \frac{\sin x}{x^{p}} d x=\int_{0}^{1} \frac{f(x)}{x^{p-1}} d x \leq M \int_{0}^{1} \frac{d x}{x^{p-1}}<\infty
$$

if $p<2$ and that

$$
\int_{0}^{1} \frac{\sin x}{x^{p}} d x=\int_{0}^{1} \frac{f(x)}{x^{p-1}} d x \geq m \int_{0}^{1} \frac{d x}{x^{p-1}}=\infty
$$

if $p \geq 2$. Similarly, notice that

$$
\int_{0}^{1} \frac{(\sin x)^{q}}{x} d x=\int_{0}^{1} x^{q-1} f^{q}(x) d x \leq M^{q} \int_{0}^{1} x^{q-1} d x<\infty
$$

if $q>0$ and that

$$
\int_{0}^{1} \frac{(\sin x)^{q}}{x} d x=\int_{0}^{1} x^{q-1} f^{q}(x) d x \geq m^{q} \int_{0}^{1} x^{q-1} d x=\infty
$$

if $q \leq 0$.

Midterm Practice

1. Verify the inclusions $\ell_{1} \subset \ell_{2}, \ell_{\infty}$. Are any of these spaces closed in the bigger one?

Proof. Let $x=\left(x_{n}\right) \in \ell_{1}$. That is, $\sum\left|x_{n}\right|<\infty$. For each k we have

$$
\left|x_{k}\right| \leq \sum_{n=1}^{\infty}\left|x_{n}\right|=\|x\|_{1}
$$

so taking the supremum over k gives $\|x\|_{\infty} \leq\|x\|_{1}<\infty$ and we conclude $x \in \ell_{\infty}$. Since the series $\sum\left|x_{n}\right|$ converges the sequence $\left|x_{n}\right|$ converegs to 0 . Hence for some N and all $n \geq N$ we have $\left|x_{n}\right|^{2}<\left|x_{n}\right|$, so

$$
\|x\|_{2}^{2}=\sum_{1}^{\infty}\left|x_{n}\right|^{2} \leq \sum_{1}^{N-1}\left|x_{n}\right|^{2}+\sum_{N}^{\infty}\left|x_{n}\right| \leq \sum_{1}^{N-1}\left|x_{n}\right|^{2}+\|x\|_{1}<\infty
$$

and $x \in \ell_{2}$ as well. In fact, we have $\ell_{1} \subset \ell_{2} \subset \ell_{\infty}$.
We will show that ℓ_{1} is neither closed in ℓ_{2} nor in ℓ_{∞}. For notational convenience (and intuition!) we define the "sequences of compact support" consisting of those sequences which, after a finite number of terms, are identically 0 :

$$
F=\left\{x \in \ell_{\infty}: \exists N \text { so that } \forall n \geq N, x_{n}=0\right\}
$$

Notice the inclusions $F \subsetneq \ell_{1} \subsetneq \ell_{2} \subsetneq c_{0} \subsetneq c \subsetneq \ell_{\infty}$. We will compute the closure of F in both the ℓ_{2} and ℓ_{∞} topologies; from there we can make conclusions about ℓ_{1}.
First we compute the closure of F in ℓ_{2}. Let $x \in \ell_{2}$ be arbitrary and $\epsilon>0$. Since $\sum\left|x_{n}\right|^{2}<\infty$ we can find an N so that

$$
\sum_{n=N}^{\infty}\left|x_{n}\right|^{2}<\epsilon
$$

We can define $y \in F$ as

$$
y_{n}= \begin{cases}x_{n} & \text { if } n<N \\ 0 & \text { if } n \geq N\end{cases}
$$

so that

$$
\|x-y\|_{2}=\sum_{n=N}^{\infty}\left|x_{n}\right|^{2}<\epsilon
$$

Since x and ϵ are arbitrary, we conclude that a point in ℓ_{2} can be approximated to within any error by an element of F. That is, any point of ℓ_{2} is a limit point of F. This shows that $\bar{F} \supseteq \ell_{2}$, but since we know $\bar{F} \subseteq \ell_{2}$ we can conclude $\bar{F}=\ell_{2}$. Now consider the following topological fact: whenever $A \subseteq B$, it follows that $\bar{A} \subseteq \bar{B}$. Thus we know that

$$
\bar{F} \subseteq \overline{\ell_{1}} \subseteq \overline{\ell_{2}}
$$

where all closures refer to the ℓ_{2} topology. We've shown that $\bar{F}=\ell_{2}$; furthermore, ℓ_{2} is closed in its own metric, so we have

$$
\ell_{2} \subseteq \overline{\ell_{1}} \subseteq \ell_{2}
$$

which implies that $\overline{\ell_{1}}=\ell_{2}$. Since $\overline{\ell_{1}} \neq \ell_{1}$, we see that ℓ_{1} is not closed in ℓ_{2}.
Now we compute the closure of F in ℓ_{∞}. From a previous homework problem we know that c_{0} is closed; since $F \subseteq c_{0}$ we know $\bar{F} \subseteq c_{0}$ (now we use the closure symbol with respect to the ℓ_{∞} topology). Let $x \in c_{0}$ be arbitrary and $\epsilon>0$. Since x converges to 0 we can find N so that for all $n \geq N$ we have $\left|x_{n}\right|<\epsilon$. We can define $y \in F$ as

$$
y_{n}= \begin{cases}x_{n} & \text { if } n<N \\ 0 & \text { if } n \geq N\end{cases}
$$

so that

$$
\left|x_{n}-y_{n}\right|= \begin{cases}0 & \text { if } n<N \\ \left|x_{n}\right| & \text { if } n \geq N\end{cases}
$$

For all n we have $\left|x_{n}-y_{n}\right|<\epsilon$ and hence $\|x-y\|_{\infty}<\epsilon$. Since x and ϵ are arbitrary, we see that points in c_{0} can be approximated to within any error by points in F; that is, $\bar{F} \supseteq c_{0}$. Hence $\bar{F}=c_{0}$ and from $F \subset \ell_{1} \subset c_{0}$ we conclude - as with ℓ_{2} above-that $\overline{\ell_{1}}=c_{0}$. Once again the closure of ℓ_{1} is not itself, so ℓ_{1} is not closed in ℓ_{∞}.
2. Let $C(0,1)$ denote the space of continuous functions on the open interval $(0,1)$. For $f, g \in C(0,1)$ define

$$
U(f, g)=\{t \in(0,1): f(t) \neq g(t)\} .
$$

By continuity $U(f, g)$ is an open set, hence a disjoint union of intervals. Define $d(f, g)=$ length $(U(f, g))$. Prove that $(C(0,1), d)$ is a metric space.

Proof. Note that $d \geq 0$ by definition and that $d(f, g)=d(g, f)$ trivially. Suppose that $d(f, g)=0$. Then $U(f, g)=\varnothing$ and $f=g$. Finally, given $f, g, h \in C[0,1]$ we have that

$$
\begin{aligned}
{[0,1] \backslash U(f, h) } & =\{t \in[0,1]: f(t)=h(t)\} \\
& \supseteq\{t \in[0,1]: f(t)=g(t) \text { and } h(t)=g(t)\} \\
& =\{t \in[0,1]: f(t)=g(t)\} \cap\{t \in[0,1]: h(t)=g(t)\} \\
& =([0,1] \backslash U(f, g)) \cap([0,1] \backslash U(g, h)) \\
& =[0,1] \backslash(U(f, g) \cup U(g, h))
\end{aligned}
$$

So that $U(f, h) \subseteq U(f, g) \cup U(g, h)$. Length is both monotonic and subadditive (a fact from measure theory which is intuitively clear in this context), so that

$$
\begin{aligned}
d(f, h) & =\operatorname{length}(U(f, h)) \\
& \leq \operatorname{length}(U(f, g) \cup U(g, h)) \\
& \leq \operatorname{length}(U(f, g))+\operatorname{length}(U(g, h)) \\
& =d(f, g)+d(g, h)
\end{aligned}
$$

The triangle inequality holds, so d is in fact a metric for $C[0,1]$.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be separately continuous. Prove that if each function $x \mapsto f\left(x, y_{0}\right)$ and $y \mapsto f\left(x_{0}, y\right)$ is uniformly continuous with respect to x_{0} and y_{0}, then the function f is continuous.

Proof. For simplicity we show that f is continuous at $(0,0)$; the same argument shows that the function is continuous at any point in the plane. Let $\epsilon>0$ and find δ_{1} so that for any x, y with $|x|<\delta_{1}$ we have $|f(x, y)-f(0, y)|<\epsilon / 2$. Similarly find δ_{2} so that for any x, y with $|y|<\delta_{2}$ we have $|f(x, y)-f(x, 0)|<\epsilon / 2$. Set $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. If $\|(x, y)\|<\delta$ then both $|x|<\delta_{1}$ and $|y|<\delta_{2}$ so we find

$$
|f(x, y)-f(0,0)| \leq|f(x, y)-f(x, 0)|+|f(x, 0)-f(0,0)|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Hence f is continuous at $(0,0)$.
4. Use the Arzelà-Ascoli theorem to show that $\left\{f \in C[0,1]:\|f\|_{\infty} \leq 1\right\}$ cannot be covered by a sequence of compact sets.

Proof. Denote $B=\left\{f \in C[0,1]:\|f\|_{\infty} \leq 1\right\}$ as the unit ball in $C[0,1]$. Suppose that K_{1}, K_{2}, \ldots are compact sets in B so that $B=\cup_{n} K_{n}$. Each K_{n} is contained in B, hence uniformly bounded. By the Arzelà-Ascoli theorem, each K_{n} is an equicontinuous family of functions in $C[0,1]$.
Then more stuff. Whatever.

Midterm

1. Give an example of an incomplete metric space and compute its completion.

Proof. A simple example is \mathbb{Q} whose completion is \mathbb{R} by definition.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a uniformly continuous function. Prove that the set of its translates

$$
f_{a}(x)=f(x-a), \quad a \in \mathbb{R}
$$

is equicontinuous.
Proof. Let $\epsilon>0$ and choose $\delta>0$ so that whenever $x, y \in \mathbb{R}$ with $|x-y|<\delta$ it follows that $|f(x)-f(y)|<\epsilon$. Given such x, y and any $a \in \mathbb{R}$ we have

$$
|(x-a)-(y-a)|=|x-y|<\delta \quad \Longrightarrow \quad\left|f_{a}(x)-f_{a}(y)\right|=|f(x-a)-f(y-a)|<\epsilon
$$

Thus the family is equicontinuous.
3. Find a set $S \subset \ell^{\infty}$ which is closed, bounded, bu not compact.

Proof. Define the closed unit ball $S=\left\{x \in \ell^{\infty}:\|x\|_{\infty} \leq 1\right\}$. The ball is clearly closed and bounded, but not compact; to see this consider the sequence $\left(x_{n}\right)$ in S wherein each x_{n} is a sequence of all zeroes, except for a 1 in the n-th position. Whenever $n \neq m$ we have $\left\|x_{n}-x_{m}\right\|_{\infty}=1$, so that no subsequence can be Cauchy, let alone convergent.
4. Prove that $d(x, y)=\left|x^{3}-y^{3}\right|$ is a distance on $x, y \in(0, \infty)$.

Proof. This is straight-forward. Clearly $d(x, y) \geq 0$ and $d(x, y)=d(y, x)$ for any $x, y \in(0, \infty)$. Further, if $d(x, y)=0$ then $x^{3}-y^{3}=0$ and $x=y$. Finally, given any $x, y, z \in(0, \infty)$ we have

$$
d(x, z)=\left|x^{3}-z^{3}\right| \leq\left|x^{3}-y^{3}\right|+\left|y^{3}-z^{3}\right|=d(x, y)+d(y, z)
$$

so d is a metric.
5. Let K be a compact subset of a complete metric space (X, d). Prove that the function

$$
x \mapsto \operatorname{dist}(x, K)=\inf _{y \in K} d(x, y)
$$

is a continuous function on X.
Proof. Let $\epsilon>0$ and choose $\delta=\epsilon / 2$. Given $x, y \in X$ with $d(x, y)<\delta$, we can find $z \in K$ so that

$$
d(x, z)<\operatorname{dist}(x, K)+\epsilon / 2
$$

Since $\operatorname{dist}(y, K) \leq d(y, z)$ we have that

$$
\operatorname{dist}(y, K) \leq d(y, z) \leq d(x, y)+d(x, z)<\delta+\operatorname{dist}(x, K)+\epsilon / 2=\operatorname{dist}(x, K)+\epsilon
$$

Thus $\operatorname{dist}(y, K)-\operatorname{dist}(x, K)<\epsilon$. Reversing the roles of x, y in the above argument gives $\operatorname{dist}(x, K)-$ $\operatorname{dist}(y, K)<\epsilon$; together this gives $|\operatorname{dist}(y, K)-\operatorname{dist}(x, K)|<\epsilon$, so the function is continuous.

