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Homework Problems

1. Let (Xi, di), 1 ≤ i ≤ n, be finitely many metric spaces. Construct a metric on the product space X =
X1 × · · · ×Xn.

Proof. Denote points in X as x = (x1, x2, . . . , xn). Given x, y ∈ X define d(x, y) = d1(x1, y1) + · · · +
d(xn, yn). Then clearly d(x, y) ≥ 0 and d(x, y) = d(y, x). Furthermore, if d(x, y) = 0 then each di(xi, yi) =
0. That is, each xi = yi and x = y. Finally, given x, y, z ∈ X we have

d(x, z) =

n∑
i=1

di(xi, zi) ≤
n∑

i=1

di(xi, yi) + di(yi, zi) = d(x, y) + d(y, z).

Hence d is a metric on X.

2. Let (X, d) be a metric space. Prove that

δ(x, y) =
d(x, y)

1 + d(x, y)
; x, y ∈ X

is also a metric on X.

Proof. Clearly we have that δ(x, y) = δ(y, x) and δ(x, y) ≥ 0. If δ(x, y) = 0, then d(x, y) = 0 and x = y.
Finally, given x, y, z ∈ X we have

δ(x, z) =
d(x, z)

1 + d(x, z)

= 1− 1

1 + d(x, z)

≤ 1− 1

1 + d(x, y) + d(y, z)

=
d(x, y) + d(y, z)

1 + d(x, y) + d(y, z)

=
d(x, y)

1 + d(x, y) + d(y, z)
+

d(y, z)

1 + d(x, y) + d(y, z)

≤ d(x, y)

1 + d(x, y)
+

d(y, z)

1 + d(y, z)

= δ(x, y) + δ(y, z).

Hence δ is a metric on X.

3. Prove that the space `∞ of bounded sequences is complete with respect to the ‖ · ‖∞ distance. Let c, c0
denote the subspaces of `∞ of convergent, respectively, convergent to zero, sequences. Prove that c, c0 are
closed subspaces of `∞.



Proof. This is a bit of a notational challenge. Let x1, x2, x3 . . . be a sequence of points within `∞, each of
which is itself a sequence of real numbers. That is, for each i ≥ 1 we have that

xi = (xi1, xi2, xi3, . . .).

Suppose that the sequence (xi) is Cauchy in `∞. Then for each i,m, n ≥ 1 we have

|xim − xin| ≤ sup
i
|xim − xin| = ‖xm − xn‖∞ → 0

as m,n → ∞. That is, each sequence of real numbers xi1, xi2, . . . is Cauchy in R, hence convergent. Let
yi = limxin and consider the sequence y = (yi).

Let ε > 0. Find N (depending only upon ε) so that for all m,n ≥ N we have ‖xn − xm‖∞ < ε/2. For each
k this implies that |xnk−xmk| < ε/2. If we take m→∞ then xmk → yk and we have that |xnk− yk| ≤ ε/2
for all k ≥ 1. Taking the supremum over k gives ‖xn − y‖∞ ≤ ε/2 < ε. This shows that ‖xn − y‖∞ → 0 as
n→∞. We should also verify that y ∈ `∞; if n is such that ‖xn − y‖∞ < 1 then

‖y‖∞ = ‖xn + (xn − y)‖∞ < ‖xn‖∞ + 1 <∞,

so indeed y ∈ `∞.

Now we turn our attention to c and c0; since convergent sequences are bounded we have that c, c0 ⊂ `∞.
It is clear that c, c0 are both subspaces, so we’ll only show that they are both closed. Suppose that (xn) is
a sequence in c which converges to some point y ∈ `∞. We wish to show that y ∈ c. Let ε > 0 and find n
so that ‖xn − y‖∞ < ε/3. Now find M so that for all j, k ≥M we have |xnj − xnk| < ε/3. For all such j, k
we have

|yj − yk| ≤ |yj − xnj |+ |xnj − xnk|+ |xnk − yk|
≤ ‖y − xn‖∞ + |xnj − xnk|+ ‖y − xk‖∞

<
ε

3
+
ε

3
+
ε

3
= ε.

So y is a Cauchy sequence of real numbers, hence convergent. That is, y ∈ c.
Now suppose that (xn) is a sequence in c0 which converges to some y ∈ `∞. Since c0 ⊂ c, the above reasoning
shows that y ∈ c; we need only show that lim y = 0. Let ε > 0 and take n so that ‖y − xn‖∞ < ε/2. Then
for each k we have |yk − xnk| < ε/2. Find M so that for all k ≥ M we have |xnk| < ε/2; for all such k we
have

|yk| ≤ |yk − xnk|+ |xnk| <
ε

2
+
ε

2
= ε.

So lim y = 0 as desired.

4. Describe the intervals [0, a] ⊂ R such that the function f : [0, a]→ [0, a], f(x) = sinx, is contractive.

Proof. Let a > 0. Suppose there exists a c < 1 so that for all x, y ∈ [0, a],

| sinx− sin y| ≤ c|x− y|.

Let x ∈ (0, a] and note that
| sinx− sin 0|
|x− 0|

< c.

But if we take x → 0, we have that 1 ≤ c, a contradiction. Upon no such interval is the sine function
contractive.

5. Let A be a bounded subset of C[0, 1]. Prove that the set of functions

F (x) =

∫ x

0

f(t) dt, f ∈ A,

is equicontinuous in C[0, 1].



Proof. For convenience denote

F =

{∫ x

0

f(t) dt : f ∈ A
}
.

Choose M > 0 so that for each f ∈ A we have ‖f‖∞ ≤M . Given ε > 0 set δ = ε/M . Whenever x, y ∈ [0, 1]
are such that |x− y| < δ and f ∈ A, it follows that∣∣∣∣∫ x

0

f(t) dt−
∫ y

0

f(t) dt

∣∣∣∣ =

∣∣∣∣∫ x

y

f(t) dt

∣∣∣∣ ≤M |x− y| < Mδ = ε,

so we conclude that F is equicontinuous.

6. Is the sequence of functions sin(nx), n ≥ 1, equicontinuous in C[0, 1]?

Proof. Suppose that the sequence is equicontinuous. In particular, there exists a δ so that for any n and
x, y ∈ R with |x− y| < δ,

| sinnx− sinny| < 1.

Let n be so large that π/2n < δ. Then |π/2n− 0| < δ, yet

| sin(n · π/2n)− sin(n · 0)| = 1,

a contradiction. The family is not equicontinuous.

7. Start with P0 = 0 and define for n ≥ 0

Pn+1(x) = Pn(x) +
x2 − P 2

n(x)

2
.

Prove that Pn(x)→ |x| uniformly on [−1, 1].

Proof. We start by proving that 0 ≤ Pn(x) ≤ |x| for all x ∈ [−1, 1] and n ≥ 0. This is true for P0(x) = 0,
so assume it true for some n ≥ 0. Then x2 − P 2

n(x) ≥ 0 and Pn(x) ≥ 0 implies that Pn+1(x) ≥ 0. Further,
notice that

|x| − Pn+1(x) = [|x| − Pn(x)]

[
1− |x|+ Pn(x)

2

]
. (1)

Each factor on the right is positive since Pn ≤ |x| and (|x| + Pn(x))/2 ≤ |x| ≤ 1; thus Pn+1(x) ≤ |x|. By
induction 0 ≤ Pn(x) ≤ |x| for all x ∈ [−1, 1] and n ≥ 0.

FIRST PROOF Define the functions gn(x) = |x|−Pn(x); we want to show that gn → 0 uniformly. Notice
that

gn+1(x) = gn(x)

[
1− |x|+ Pn(x)

2

]
≤ gn(x)

[
1− |x|

2

]
.

Since g0(x) = |x| we find that

gn(x) ≤ |x|
(

1− |x|
2

)n

.

We wish to bound the right side from above uniformly in x. It suffices to consider x ≥ 0; define f : [0, 1]→ R
by

f(x) = x
(

1− x

2

)n
.

Since f is continuous on a compact interval, it attains an absolute maximum. To find candidates for the
maximum, we need

0 =
d

dx
ln f(x)

=
1

x
− n

2− x

=
2− x(n+ 1)

x(2− x)
.



The only relative maximum of f occurs at x = 2/(n + 1). Since f(0) = 0 and f(1) = 2−n, the absolute
maximum is at x = 2/(n+ 1). Therefore

gn(x) ≤ |x|
(

1− |x|
2

)n

≤ f
(

2

n+ 1

)
=

2

n+ 1

(
1− 1

n+ 1

)n

<
2

n+ 1
.

Thus ‖gn‖∞ ≤ 2/(n+ 1) and gn → 0 uniformly, as desired.

ALTERNATIVE PROOF Once we know that 0 ≤ Pn(x) ≤ |x| we see that

Pn+1(x) = Pn(x) +
x2 − P 2

n(x)

2
≥ Pn(x),

so for each x the sequence (Pn(x)) is monotone and bounded by |x|, hence pointwise convergent. This limit
function must be |x|; if we denote Pn(x)→ L then

L = L+
x2 − L2

2
,

so L = |x| because L ≥ 0. Uniform convergence now follows from Dini’s theorem:

Theorem (Dini). Let X be a compact metric space and suppose that

f1 ≥ f2 ≥ f3 ≥ · · ·

are continuous real-valued functions which converge pointwise to a continuous function f . Then the con-
vergence is uniform.

Proof of Dini’s theorem. If we consider fn−f , we have a monotone sequence of continuous functions which
converge pointwise to 0 (from above); henceforth we’ll assume the pointwise limit is 0. If fn does not
converge uniformly to 0, there exists ε > 0 and a subsequence (fnk

) so that ‖fnk
‖∞ ≥ 2ε for all k. That is,

we can find a sequence of points (xnk
) in X so that fnk

(xnk
) ≥ ε for all k. Since X is compact there is a

convergent subsequence of (xnk
); for simplicity, we’ll not denote a new sequence and instead assume that

xnk
→ x ∈ X. Here’s where we use monotonicity: fix j and note that for any k > j

ε ≤ fnk
(xnk

) ≤ fnj
(xnk

).

If we take k → ∞ then fnj (xnk
) → fnj (x) by continuity; thus fnj (x) ≥ ε for arbitrary j. Taking j → ∞

we see that fnj
(x) 6→ 0, a contradiction.

The continuous functions |x| − Pn(x) monotonically approach 0 pointwise from above, so the convergence
is uniform by Dini’s theorem.

Addendum Here’s an even better proof of Dini’s theorem!

Proof. Let ε > 0 and define for each n ≥ 0 the set Un = {x ∈ X : fn(x)− f(x) < ε}. Since each fn − f is
continuous, each Un is open. The monotonicity of the sequence (fn) implies that the sets Un are nested:
U1 ⊆ U2 ⊆ U3 ⊆ · · · . At any x ∈ X the sequence (fn(x) − f(x)) converges to 0, so each x is in some Un.
That is, the sets Un form an open cover of X; by compactness a finite subcover exists: U1∪U2∪· · ·∪UN = X.
But the sets Un are nested, so UN = X and for all n ≥ N we have X = UN ⊆ Un ⊆ X, whence Un = X as
well. Translating out of set language, for all n ≥ N we have fn − f < ε throughout X.

8. (a) Give an example of a continuous function f : [1,∞) → [0,∞) so that
∫∞
1
f diverges but

∑∞
1 f

converges.

(b) Give an example of a continuous function f : [1,∞) → [0,∞) so that
∫∞
1
f converges but

∑∞
1 f

diverges.

Proof. (a) Let f be a sawtooth function with f(x) = |x| on [−1/2, 1/2], extended periodically. Then
∫
f

is the area of an infinite number of triangles, each of area 1/4. Nevertheless f(n) = 0 for each integer
n, whence

∑
f converges.



(b) Let f be defined as

f(x) =


2n(x− n) + 1 if n− 2−n ≤ x ≤ n
2n(n− x) + 1 if n ≤ x ≤ n+ 2−n

0 otherwise

A picture is more illuminating; the graph of f is a sawtooth which is 1 at each integer, a narrow
triangle near each integer, and 0 otherwise. The sum

∑
f diverges, yet each triangle has area 2−n, so∫ ∞

1

f(x) dx =

∞∑
n=1

1

2n
= 1.

9. For which values of p, q are the integrals∫ 1

0

sinx

xp
dx and

∫ 1

0

(sinx)q

x
dx

convergent?

Proof. Answer: p < 2 and q > 0. Recall that sinx/x→ 1 as x→ 0; extend sinx/x to a positive, continuous
function f on the interval [0, 1]. Let m,M be the infimum and supremum, respectively, of f on [0, 1]. Notice
that ∫ 1

0

sinx

xp
dx =

∫ 1

0

f(x)

xp−1
dx ≤M

∫ 1

0

dx

xp−1
<∞

if p < 2 and that ∫ 1

0

sinx

xp
dx =

∫ 1

0

f(x)

xp−1
dx ≥ m

∫ 1

0

dx

xp−1
=∞

if p ≥ 2. Similarly, notice that∫ 1

0

(sinx)q

x
dx =

∫ 1

0

xq−1fq(x) dx ≤Mq

∫ 1

0

xq−1 dx <∞

if q > 0 and that ∫ 1

0

(sinx)q

x
dx =

∫ 1

0

xq−1fq(x) dx ≥ mq

∫ 1

0

xq−1 dx =∞

if q ≤ 0.



Midterm Practice

1. Verify the inclusions `1 ⊂ `2, `∞. Are any of these spaces closed in the bigger one?

Proof. Let x = (xn) ∈ `1. That is,
∑
|xn| <∞. For each k we have

|xk| ≤
∞∑

n=1

|xn| = ‖x‖1,

so taking the supremum over k gives ‖x‖∞ ≤ ‖x‖1 < ∞ and we conclude x ∈ `∞. Since the series
∑
|xn|

converges the sequence |xn| converegs to 0. Hence for some N and all n ≥ N we have |xn|2 < |xn|, so

‖x‖22 =

∞∑
1

|xn|2 ≤
N−1∑
1

|xn|2 +

∞∑
N

|xn| ≤
N−1∑
1

|xn|2 + ‖x‖1 <∞,

and x ∈ `2 as well. In fact, we have `1 ⊂ `2 ⊂ `∞.

We will show that `1 is neither closed in `2 nor in `∞. For notational convenience (and intuition!) we define
the “sequences of compact support” consisting of those sequences which, after a finite number of terms, are
identically 0:

F = {x ∈ `∞ : ∃N so that ∀n ≥ N, xn = 0}.
Notice the inclusions F ( `1 ( `2 ( c0 ( c ( `∞. We will compute the closure of F in both the `2 and `∞
topologies; from there we can make conclusions about `1.

First we compute the closure of F in `2. Let x ∈ `2 be arbitrary and ε > 0. Since
∑
|xn|2 <∞ we can find

an N so that
∞∑

n=N

|xn|2 < ε.

We can define y ∈ F as

yn =

{
xn if n < N

0 if n ≥ N

so that

‖x− y‖2 =

∞∑
n=N

|xn|2 < ε.

Since x and ε are arbitrary, we conclude that a point in `2 can be approximated to within any error by an
element of F . That is, any point of `2 is a limit point of F . This shows that F ⊇ `2, but since we know
F ⊆ `2 we can conclude F = `2. Now consider the following topological fact: whenever A ⊆ B, it follows
that A ⊆ B. Thus we know that

F ⊆ `1 ⊆ `2,
where all closures refer to the `2 topology. We’ve shown that F = `2; furthermore, `2 is closed in its own
metric, so we have

`2 ⊆ `1 ⊆ `2,
which implies that `1 = `2. Since `1 6= `1, we see that `1 is not closed in `2.

Now we compute the closure of F in `∞. From a previous homework problem we know that c0 is closed;
since F ⊆ c0 we know F ⊆ c0 (now we use the closure symbol with respect to the `∞ topology). Let x ∈ c0
be arbitrary and ε > 0. Since x converges to 0 we can find N so that for all n ≥ N we have |xn| < ε. We
can define y ∈ F as

yn =

{
xn if n < N

0 if n ≥ N

so that

|xn − yn| =

{
0 if n < N

|xn| if n ≥ N

For all n we have |xn − yn| < ε and hence ‖x − y‖∞ < ε. Since x and ε are arbitrary, we see that points
in c0 can be approximated to within any error by points in F ; that is, F ⊇ c0. Hence F = c0 and from
F ⊂ `1 ⊂ c0 we conclude—as with `2 above—that `1 = c0. Once again the closure of `1 is not itself, so `1
is not closed in `∞.



2. Let C(0, 1) denote the space of continuous functions on the open interval (0, 1). For f, g ∈ C(0, 1) define

U(f, g) = {t ∈ (0, 1) : f(t) 6= g(t)}.

By continuity U(f, g) is an open set, hence a disjoint union of intervals. Define d(f, g) = length(U(f, g)).
Prove that (C(0, 1), d) is a metric space.

Proof. Note that d ≥ 0 by definition and that d(f, g) = d(g, f) trivially. Suppose that d(f, g) = 0. Then
U(f, g) = ∅ and f = g. Finally, given f, g, h ∈ C[0, 1] we have that

[0, 1] \ U(f, h) = {t ∈ [0, 1] : f(t) = h(t)}
⊇ {t ∈ [0, 1] : f(t) = g(t) and h(t) = g(t)}
= {t ∈ [0, 1] : f(t) = g(t)} ∩ {t ∈ [0, 1] : h(t) = g(t)}
= ([0, 1] \ U(f, g)) ∩ ([0, 1] \ U(g, h))

= [0, 1] \ (U(f, g) ∪ U(g, h))

So that U(f, h) ⊆ U(f, g)∪U(g, h). Length is both monotonic and subadditive (a fact from measure theory
which is intuitively clear in this context), so that

d(f, h) = length(U(f, h))

≤ length(U(f, g) ∪ U(g, h))

≤ length(U(f, g)) + length(U(g, h))

= d(f, g) + d(g, h).

The triangle inequality holds, so d is in fact a metric for C[0, 1].

3. Let f : R2 → R be separately continuous. Prove that if each function x 7→ f(x, y0) and y 7→ f(x0, y) is
uniformly continuous with respect to x0 and y0, then the function f is continuous.

Proof. For simplicity we show that f is continuous at (0, 0); the same argument shows that the function
is continuous at any point in the plane. Let ε > 0 and find δ1 so that for any x, y with |x| < δ1 we have
|f(x, y)−f(0, y)| < ε/2. Similarly find δ2 so that for any x, y with |y| < δ2 we have |f(x, y)−f(x, 0)| < ε/2.
Set δ = min(δ1, δ2). If ‖(x, y)‖ < δ then both |x| < δ1 and |y| < δ2 so we find

|f(x, y)− f(0, 0)| ≤ |f(x, y)− f(x, 0)|+ |f(x, 0)− f(0, 0)| < ε

2
+
ε

2
= ε.

Hence f is continuous at (0, 0).

4. Use the Arzelà-Ascoli theorem to show that {f ∈ C[0, 1] : ‖f‖∞ ≤ 1} cannot be covered by a sequence of
compact sets.

Proof. Denote B = {f ∈ C[0, 1] : ‖f‖∞ ≤ 1} as the unit ball in C[0, 1]. Suppose that K1,K2, . . . are
compact sets in B so that B = ∪nKn. Each Kn is contained in B, hence uniformly bounded. By the
Arzelà-Ascoli theorem, each Kn is an equicontinuous family of functions in C[0, 1].

Then more stuff. Whatever.



Midterm

1. Give an example of an incomplete metric space and compute its completion.

Proof. A simple example is Q whose completion is R by definition.

2. Let f : R→ R be a uniformly continuous function. Prove that the set of its translates

fa(x) = f(x− a), a ∈ R

is equicontinuous.

Proof. Let ε > 0 and choose δ > 0 so that whenever x, y ∈ R with |x−y| < δ it follows that |f(x)−f(y)| < ε.
Given such x, y and any a ∈ R we have

|(x− a)− (y − a)| = |x− y| < δ =⇒ |fa(x)− fa(y)| = |f(x− a)− f(y − a)| < ε.

Thus the family is equicontinuous.

3. Find a set S ⊂ `∞ which is closed, bounded, bu not compact.

Proof. Define the closed unit ball S = {x ∈ `∞ : ‖x‖∞ ≤ 1}. The ball is clearly closed and bounded, but
not compact; to see this consider the sequence (xn) in S wherein each xn is a sequence of all zeroes, except
for a 1 in the n-th position. Whenever n 6= m we have ‖xn − xm‖∞ = 1, so that no subsequence can be
Cauchy, let alone convergent.

4. Prove that d(x, y) = |x3 − y3| is a distance on x, y ∈ (0,∞).

Proof. This is straight-forward. Clearly d(x, y) ≥ 0 and d(x, y) = d(y, x) for any x, y ∈ (0,∞). Further, if
d(x, y) = 0 then x3 − y3 = 0 and x = y. Finally, given any x, y, z ∈ (0,∞) we have

d(x, z) = |x3 − z3| ≤ |x3 − y3|+ |y3 − z3| = d(x, y) + d(y, z),

so d is a metric.

5. Let K be a compact subset of a complete metric space (X, d). Prove that the function

x 7→ dist(x,K) = inf
y∈K

d(x, y)

is a continuous function on X.

Proof. Let ε > 0 and choose δ = ε/2. Given x, y ∈ X with d(x, y) < δ, we can find z ∈ K so that

d(x, z) < dist(x,K) + ε/2.

Since dist(y,K) ≤ d(y, z) we have that

dist(y,K) ≤ d(y, z) ≤ d(x, y) + d(x, z) < δ + dist(x,K) + ε/2 = dist(x,K) + ε.

Thus dist(y,K) − dist(x,K) < ε. Reversing the roles of x, y in the above argument gives dist(x,K) −
dist(y,K) < ε; together this gives |dist(y,K)− dist(x,K)| < ε, so the function is continuous.


