Math 5C Spring 2010 Exam 1

April 16, 2010

	M. Choice	
	F. Resp. 1	
	F. Resp. 2	
Name	F. Resp. 3	
Perm No	F. Resp. 4	
	Total	

Directions:

- 1. There are 125 points on this exam; 100 points = 100%.
- 2. Each multiple choice problem is 5 points.
- 3. Each multiple choice problem has exactly one best answer.
- 4. No multiple choice problem requires heavy computation.
- 5. Each free response problem is 20 points.
- 6. Free response questions require justification; no work, no credit.
- 7. A blank free-response problem is awarded 5 points.
- 8. You are allowed one (1) 3 by 5 notecard.

Potentially useful integrals:

$$\int \ln t \, dt = t \ln t - t + C$$
$$\int t \ln t \, dt = \frac{1}{2}t^2 \ln t - \frac{1}{4}t^2 + C$$

Multiple Choice

- 1. Let R be the region inside the cylinder $x^2 + y^2 = 7$, above the plane z = 0, and below the cone $z = \sqrt{x^2 + y^2}$. In which coordinate system can R be described most simply?
 - (a) Cartesian
 - (b) Cylindrical
 - (c) Spherical
 - (d) Intergalactic planetary
 - (e) Planetary intergalactic

2. Let D be the unit disk centered at (0,1) in \mathbb{R}^2 . What is $\iint_D (5x+2) dA$?

- (a) 0
- (b) 2π
- (c) 5π
- (d) 7π
- (e) None of the above

3. Let S be the sphere of radius R centered at the origin. What is $\iint_S (x^2 + y^2 + z^2) d\sigma$?

- (a) 0
- (b) $4\pi R^2$
- (c) $16\pi^2 R^4$
- (d) $4\pi R^4$
- (e) $16\pi^2 R^2$

4. Given a surface and a vector field, the flux is a measurement of what?

- (a) Amount of stuff crossing the surface
- (b) Amount of stuff flowing on the surface
- (c) Area
- (d) The enclosed volume
- (e) Fluxing

5. Let R be the unit cube in \mathbb{R}^3 given by $1 \le x, y, z \le 2$. Evaluate $\iiint_R dV$.

- (a) 1
- (b) 3
- (c) 7
- (d) 7/3
- (e) $V^3/6 + C$

6. Let C be a unit circle in \mathbb{R}^3 , oriented counterclockwise. Given **T** and **N**, the unit tangent and unit normal vectors respectively, define the unit binormal vector $\mathbf{B} = \mathbf{T} \times \mathbf{N}$. Evaluate

$$\oint_C \mathbf{B} \cdot d\mathbf{r}$$

- (a) 0
- (b) π
- (c) 2π
- (d) -2π
- (e) None of the above
- 7. Which of these integrals gives the area of a disk D of radius 1?

(a)
$$\iint_{D} x^{2} + y^{2} dA$$

(b)
$$\int_{0}^{1} \int_{0}^{2\pi} d\theta dr$$

(c)
$$\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} dy dx$$

(d)
$$\iint_{D} r dA$$

(e)
$$\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} 4 dx dy$$

8. The function $\Phi(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)$ parametrizes which surface?

- (a) A cone
- (b) A cylinder
- (c) A sphere
- (d) A hyperbolic paraboloid
- (e) A rhombicosidodecahedron
- 9. (Bonus Problem) What is the answer to this question?
 - (a) D
 - (b) A
 - (c) C
 - (d) None of the above
 - (e) E

Free Response

1. Let D be the unit disk in $\mathbb{R}^2,$ centered at the origin. Evaluate

$$\iint_D \ln \sqrt{x^2 + y^2} \, dA.$$

2. Evaluate

$$\iiint_{\mathbb{R}^3} \exp[-(x^2 + y^2 + z^2)^{3/2}] \, dV.$$

Notation: $\exp(t)$ means e^t .

3. Let S be the surface in \mathbb{R}^3 given by $x^2 + y^2 = 1$, $0 \le z \le 1$, and $x \ge 0$. Assume that S is oriented with normal in the positive x direction. Find the flux of the vector field $\mathbf{F}(x, y, z) = x\mathbf{i}$ across S.

4. Let C be the (oriented) straight-line path in space from (0, 0, 0) to (1, 2, 3). Evaluate

$$\int_C yz \, dx + xz \, dy + e^x \, dz.$$