Math 5C Spring 2010 Exam 3 Version A

May 28, 2010

	M. Choice	
	F. Resp. 1	
	F. Resp. 2	
Name	F. Resp. 3	
Perm No	F. Resp. 4	
	Total	

Directions:

- 1. There are 125 points on this exam; 100 points = 100%.
- 2. Each multiple choice problem is 5 points.
- 3. Each multiple choice problem has exactly one best answer.
- 4. No multiple choice problem requires heavy computation.
- 5. Each free response problem is 20 points.
- 6. Free response questions require justification; no work, no credit.

7. A blank free-response problem is awarded 5 points.

- 8. You are allowed one (1) 3 by 5 notecard.
- 9. No other notes, books, or electronic devices are allowed.

Multiple Choice

- 1. Which of the following functions is <u>not</u> harmonic on \mathbb{R}^2 ?
 - (a) x
 - (b) *y*
 - (c) *xy*
 - (d) $x^2 y^2$
 - (e) $x^2 + y^2$
- 2. If 2 terms of the Taylor series are used to approximate $\cos(0.1)$, what bound does the remainder theorem gives us for the error?
 - (a) 0
 - (b) 1/6000
 - (c) 1/6
 - (d) $(.1)^3$
 - (e) 1
- 3. The 2π -periodic function f is given by

$$f(x) = \begin{cases} 1, & 0 < x < \pi \\ -1, & -\pi < x < 0 \end{cases}$$

At x = 0, to what does the Fourier series of f converge?

- (a) -1
- (b) 0
- (c) 1
- (d) 1/2
- (e) It doesn't converge

4. Using the standard inner product for functions on $[-\pi, \pi]$, what is ||1||?

- (a) 0
- (b) 2π
- (c) 1
- (d) Undefined
- (e) None of the above

5. Which of the following could <u>not</u> be the interval of convergence for the series $\sum a_n x^n$?

- (a) $\{0\}$
- (b) \mathbb{R}
- (c) (-1,1]
- (d) (-2,3)
- (e) [-4, 4]

6. Find
$$f^{(7)}(0)$$
 for $f(x) = \sum_{n=0}^{\infty} \frac{n!}{n^n} x^n$.

- (a) $1/7^7$
- (b) $7!/7^7$
- (c) $(7!)^2/7^7$
- (d) 7^7
- (e) None of the above
- 7. The series $\sum a_n 3^n$ converges. Of the following, which must also converge?
 - (a) $\sum a_n (-3)^n$
 - (b) $\sum a_n 2^n$
 - (c) $\sum a_n 4^n$
 - (d) $\sum a_n^{1/3}$
 - (e) $\sum e^{-a_n}$
- 8. The harmonic functions f and g are equal on the surface of a ball in \mathbb{R}^3 . Which of the following must be true?
 - (a) fg is harmonic
 - (b) f = g everywhere in the ball
 - (c) The volume integral of f + g over the ball is zero
 - (d) Either f or g must be zero at some point
 - (e) The gradients ∇f and ∇g are orthogonal
- 9. (Bonus Problem) Two signs are next to each other on a wall. Each has the same three statements written on it:
 - All of the other sign's statements are false.
 - Exactly two of the other sign's statements are false.
 - Exactly one of the other sign's statements are false.

How many of the six statements are true?

- (a) 0
- (b) 2
- (c) 4
- (d) 6
- (e) It cannot be determined

Free Response

1. Evaluate the limit

$$\lim_{n \to \infty} n\left(\left(1 + \frac{1}{n}\right)^n - e\right)$$

2. The Bernoulli numbers are defined by the formula

$$\frac{x}{e^x - 1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n$$

Use this to evaluate the series

$$\sum_{n=0}^{\infty} \frac{(n+1)B_n}{n!}$$

3. Compute the Fourier series for the 2π -periodic function f, where $f(x) = x^2$ for $-\pi < x < \pi$.

4. Let B be the unit ball in \mathbb{R}^3 centered at (1,2,2) and define $f(x,y,z) = x \ln(y^2 + z^2)$. Explaining your reasoning, evaluate

$$\iint_{\partial B} f \, d\sigma.$$