Math 5C Spring 2010 Practice Exam 1

	M. Choice	
	F. Resp. 1	
	F. Resp. 2	
Name	F. Resp. 3	
Perm No	F. Resp. 4	
	Total	

Directions:

- 1. There are 125 points on this exam; 100 points = 100%.
- 2. Each multiple choice problem is 5 points.
- 3. Each multiple choice problem has exactly one best answer.
- 4. No multiple choice problem requires heavy computation.
- 5. Each free response problem is 20 points.
- 6. Free response questions require justification; no work, no credit.

7. A blank free-response problem is awarded 5 points.

8. No notes, books, or electronic devices are allowed.

Multiple Choice

- 1. Let S be the region inside the sphere $x^2 + y^2 + z^2 = 7$, above the x y plane, and below the cone $z = \sqrt{x^2 + y^2}$. In which coordinate system can S be described most simply?
 - (a) Cartesian
 - (b) Cylindrical
 - (c) Spherical
 - (d) Prolate spheroidal
 - (e) Hypebolic

2. Does the path integral of a scalar function $\int_{C} f \, ds$ depend on the orientation of the curve?

- (a) It never does
- (b) It always does
- (c) It sometimes does, depending on the function f
- (d) The integral isn't defined
- 3. Let S be the surface $x^2 + y^2 = 4$, $0 \le z \le 3$. Using the polar angle θ and the height z as parameters, which of these gives the area element $d\sigma$?
 - (a) $dz d\theta$
 - (b) $r dz d\theta$
 - (c) $2 dz d\theta$
 - (d) $4 dz d\theta$
 - (e) None of the above

4. Let S be the sphere of radius R centered at the origin. What is $\iint_S d\sigma$?

- (a) 0
- (b) $4\pi R^2$
- (c) $16\pi^2 R^4$
- (d) $4\pi R^4$
- (e) $16\pi^2 R^2$
- 5. The plane z = 0 and the surface $z = 16 x^2 y^2$ bound a region R in \mathbb{R}^3 . Which of the following functions f(x, y, z) gives the volume of R when we compute $\iiint_R f(x, y, z) dV$?
 - (a) 1
 - (b) V
 - (c) $16 x^2 y^2$
 - (d) $r dr d\theta$
 - (e) The triple integral can't be used

- 6. Let S be the unit sphere centered at (0, 0, 1). In spherical coordinates, which of the following equations describes S?
 - (a) $\rho = 1$ (b) $\rho = \cos \phi$ (c) $\rho = 2 \cos \phi$ (d) $\rho = \sin \phi$ (e) $\rho = 2 \sin \phi$
- 7. Suppose that **F** is a constant vector field on \mathbb{R}^3 with $\|\mathbf{F}\| = 2$. Let *S* be the sphere of radius *R* centered at the origin, outwardly oriented. What is $\iint_{S} \mathbf{F} \cdot d\mathbf{A}$?
 - (a) 0
 - (b) 2
 - (c) 2R
 - (d) $4\pi R^2$
 - (e) $8\pi R^2$
- 8. If we rewrite

$$\int_{0}^{1} \int_{0}^{x} \int_{0}^{y} f(x, y, z) \, dz \, dy \, dx$$

using the order dx dy dz, what is the upper limit on x?

- (a) 1
- (b) *y*
- (c) z
- (d) 1 y
- (e) 1 z

9. Let R be the hemisphere given by $x^2 + y^2 + z^2 \leq 4$ and $z \geq 0$. Evaluate

$$\iiint_R (x+y+xy+y^3+5) \, dV.$$

- (a) 0
- (b) 5
- (c) π
- (d) $2\pi/3$
- (e) None of the above

Free Response

1. Let R be the top half $(y \ge 0)$ of the unit disk in \mathbb{R}^2 , centered at the origin. Evaluate

$$\iint_R e^{-(x^2+y^2)} \, dA.$$

2. Evaluate

$$\iiint_{\mathbb{R}^3} \frac{dV}{[1 + (x^2 + y^2 + z^2)^{3/2}]^{3/2}}.$$

3. Let S be the upper half $(z \ge 0)$ of the sphere given by $x^2 + y^2 + z^2 = 1$. Evaluate $\iint_S z \, d\sigma$.

4. A curve C is parametrized by $\mathbf{r}(t) = (t^2, t, 3)$, with $0 \le t \le 1$. Evaluate $\int_C y \, ds$.