Math 5C Spring 2010 Practice Exam 3

	M. Choice	
	F. Resp. 1	
	F. Resp. 2	
Name	F. Resp. 3	
Perm No	F. Resp. 4	
	Total	

Directions:

- 1. There are 125 points on this exam; 100 points = 100%.
- 2. Each multiple choice problem is 5 points.
- 3. Each multiple choice problem has exactly one best answer.
- 4. No multiple choice problem requires heavy computation.
- 5. Each free response problem is 20 points.
- 6. Free response questions require justification; no work, no credit.

7. A blank free-response problem is awarded 5 points.

8. No notes, books, or electronic devices are allowed.

Multiple Choice

- 1. Using the standard inner product for functions on $[-\pi, \pi]$, what is $\|\sin x\|$?
 - (a) 0
 - (b) $\sin^2 x$
 - (c) 1
 - (d) Undefined
 - (e) None of the above
- 2. The function $f(x) = x^2$, $-\pi < x < \pi$ is expanded into a Fourier series. What is the coefficient of $\sin(3x)$?
 - (a) 0
 - (b) 3
 - (c) 1/3
 - (d) 9
 - (e) 1/9
- 3. The power series $\sum a_n x^n$ has a finite radius of convergence R > 0. What is the radius of convergence of $\sum a_n (x/2)^n$?
 - (a) R
 - (b) 2R
 - (c) R/2
 - (d) ∞
 - (e) Cannot be determined without more information
- 4. Suppose that f is harmonic on \mathbb{R}^3 and that f = 6 for all points on the unit sphere centered at the origin. What is the largest possible value of f(1/2, 0, 0)?
 - (a) 0
 - (b) 6
 - (c) 84π
 - (d) It could be arbitrarily large
 - (e) None of the above
- 5. By definition, a harmonic function f is one which satisfies which of the following?
 - (a) $\nabla f = 0$
 - (b) $\Delta f = 0$
 - (c) $\nabla \times \nabla f = 0$
 - (d) $\Delta^2 f = 0$
 - (e) df = 0

- 6. Which of these is a series expansion of $-\ln(1-x)$ for x near zero?
 - (a) $x + x^2/2 + x^3/3 + \cdots$ (b) $x - x^2/2 + x^3/3 - \cdots$ (c) $-x + x^2/2 - x^3/3 + \cdots$ (d) $-x - x^2/2 - x^3/3 - \cdots$
 - (e) None of the above

7. When 1/(1-x) is expanded in a Taylor series at zero, what is its interval of convergence?

- (a) (-1, 1)
- (b) (-1, 1]
- (c) [-1, 1)
- (d) [-1,1]
- (e) \mathbb{R}

8. The Riemann-Lebesgue lemma states that, if $\int_{-\pi}^{\pi} |f(x)| dx < \infty$, then

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = 0$$

What does this tell about the Fourier series of f?

- (a) Nothing
- (b) Sums and integrals can be interchanged
- (c) The series converges
- (d) Parseval's identity
- (e) The coefficients tend to zero
- 9. The 2π -periodic function $f(x) = x^3$, $-\pi < x < \pi$, is expanded in a Fourier series. What is the value of the series at $x = \pi$?
 - (a) 0
 - (b) π^{3}
 - (c) $-\pi^{3}$
 - (d) The series diverges
 - (e) None of the above

Free Response

1. Evaluate

$$\lim_{n \to \infty} n^2 \left[\left(1 + \frac{1}{n} \right)^{n+1/2} - e \right]$$

2. The generating function for the Catalan numbers is

$$\sum_{n=0}^{\infty} \frac{1}{n+1} \binom{2n}{n} x^n = \frac{1-\sqrt{1-4x}}{2x}$$

Use this to sum the series

$$\sum_{n=0}^{\infty} \binom{2n}{n} 2^{-4n}$$

3. Given

$$\pi - |x| = \frac{\pi}{2} + \frac{4}{\pi} \left(\cos x + \frac{\cos 3x}{9} + \frac{\cos 5x}{25} + \frac{\cos 7x}{49} + \cdots \right), \qquad -\pi < x < \pi,$$

use Parseval's identity to evaluate

$$1 + \frac{1}{3^4} + \frac{1}{5^4} + \frac{1}{7^4} + \cdots$$

4. Let f be a harmonic function in \mathbb{R}^3 and B be the unit ball centered at the origin. Assume that (in spherical coordinates) $f = \sin \phi$ on ∂B . Find f(0, 0, 0).