Math 8, Summer 2012
 Exam 1 Solutions

Short Answer

1. Given sets A and B, give a precise definition of $A \subseteq B$.

For every $x \in A$ we have $x \in B$.
2. Let $f: A \rightarrow B$ be a function and $S \subseteq B$. Give a precise definition of $f^{-1}(S)$.

$$
f^{-1}(S)=\{x \in A: f(x) \in S\}
$$

3. A sequence of continuous functions $f_{1}, f_{2}, f_{3} \ldots$, each mapping from $[0,1]$ into \mathbb{R}, is said to converge uniformly if and only if:

For every $\epsilon>0$ there exists $N \in \mathbb{N}$ so that for all integers $n, m \geq N$ and $x \in[0,1]$ we have $\left|f_{n}(x)-f_{m}(x)\right|<\epsilon$.

Give a precise statement of what it means for such a sequence not to converge uniformly.
There is an $\epsilon>0$ so that for any positive integer N there are integers $m, n \geq N$ and a real number $x \in[0,1]$ so that $\left|f_{n}(x)-f_{m}(x)\right| \geq \epsilon$.
4. Precisely define what it means for the function $f: A \rightarrow B$ to be surjective.

For every $y \in B$ there is $x \in A$ so that $f(x)=y$.
5. Given a collection of sets $\left\{A_{i}: i \in I\right\}$, precisely define $\bigcup_{i \in I} A_{i}$.

$$
\bigcup_{i \in I} A_{i}=\left\{x: x \in A_{i} \text { for some } i \in I\right\}
$$

6. Which of these is not bijective?
(a) The identity map $\mathbb{Z} \rightarrow \mathbb{Z}$
(b) A 90° rotation of \mathbb{R}^{2} about the origin
(c) A translation of \mathbb{R}^{3} by 3 units along an axis
(d) The inclusion map $\mathbb{N} \hookrightarrow \mathbb{Z}$
(e) None of the above

Choice (d), since the inclusion map is not surjective.
7. Given sets A and B, precisely define $A \times B$.

$$
A \times B=\{(x, y): x \in A \text { and } y \in B\}
$$

8. Give a precise definition of what it means for a real number x to be rational.

There exist integers m, n with $n>0$ so that $x=m / n$.

Problems

1. Let a and b be integers. Prove that $a+b$ is even if and only if $a^{2}+b^{2}$ is even.

Proof. (\Rightarrow) Suppose that $a+b$ is even. Find an integer k so that $a+b=2 k$; then

$$
a^{2}+b^{2}=(a+b)^{2}-2 a b=2 \cdot\left(2 k^{2}-a b\right)
$$

an even integer.
(\Leftarrow) Suppose that $a+b$ is odd. Find an integer ℓ so that $a+b=2 \ell+1$; then

$$
a^{2}+b^{2}=(a+b)^{2}-2 a b=2 \cdot\left(2 \ell^{2}+2 \ell-a b\right)+1
$$

an odd integer.
2. Let A and B be sets with $\mathcal{P}(A) \cup \mathcal{P}(B)=\mathcal{P}(A \cup B)$. Prove that either $A \subseteq B$ or $B \subseteq A$.

Proof. Assume that $\mathcal{P}(A) \cup \mathcal{P}(B)=\mathcal{P}(A \cup B)$ and $A \nsubseteq B$. Then there is an $x \in A$ so that $x \notin B$. We'll prove that $B \subseteq A$; take an arbitrary $y \in B$ and consider $S=\{x, y\}$. Then $S \subseteq A \cup B$ but $S \nsubseteq B$ (since $x \in S$ but $x \notin B)$. That is, $S \in \mathcal{P}(A \cup B)$ and $S \notin \mathcal{P}(B)$. By our assumption about $\mathcal{P}(A \cup B)$ we must have $S \in \mathcal{P}(A)$. We've found that $\{x, y\} \subseteq A$, and in particular $y \in A$. This shows that $B \subseteq A$.
3. Suppose that $f: A \rightarrow B$ is an injective function and $S \subseteq A$. Prove that

$$
f(A-S)=f(A)-f(S)
$$

Proof. Suppose $y \in f(A)-f(S)$ and find $x \in A$ so that $f(x)=y$. If $x \in S$ then we would have $y \in f(S)$, contradicting our choice of y. So $x \in A-S$ and $y \in f(A-S)$. This shows $f(A-S) \subseteq f(A)-f(S)$.
Now suppose $y \in f(A-S)$ and find $x \in A-S$ so that $f(x)=y$. Since $x \in A$ we have $y \in f(A)$. Assume to the contrary that y is an element of $f(S)$ as well. Then there is $z \in S$ so that $f(z)=y$. But then $f(z)=f(x)$, and injectivity of f implies that $x=z$. In particular, $x \in S$, contradicting the fact that $x \in A-S$. So $y \notin f(S)$ and we deduce $y \in f(A)-f(S)$. This shows that $f(A)-f(S) \subseteq f(A-S)$. Altogether we conclude the two sets are equal, as desired.

