Math 8, Summer 2012 Exam 1 Solutions

Short Answer

1. Given sets A and B, give a precise definition of $A \subseteq B$.

For every $x \in A$ we have $x \in B$.

2. Let $f: A \to B$ be a function and $S \subseteq B$. Give a precise definition of $f^{-1}(S)$.

$$f^{-1}(S) = \{x \in A : f(x) \in S\}$$

3. A sequence of continuous functions $f_1, f_2, f_3 \dots$, each mapping from [0, 1] into \mathbb{R} , is said to converge uniformly if and only if:

For every $\epsilon > 0$ there exists $N \in \mathbb{N}$ so that for all integers $n, m \geq N$ and $x \in [0, 1]$ we have $|f_n(x) - f_m(x)| < \epsilon$.

Give a precise statement of what it means for such a sequence <u>not</u> to converge uniformly.

There is an $\epsilon > 0$ so that for any positive integer N there are integers $m, n \ge N$ and a real number $x \in [0,1]$ so that $|f_n(x) - f_m(x)| \ge \epsilon$.

4. Precisely define what it means for the function $f: A \to B$ to be surjective.

For every $y \in B$ there is $x \in A$ so that f(x) = y.

5. Given a collection of sets $\{A_i : i \in I\}$, precisely define $\bigcup_{i \in I} A_i$.

$$\bigcup_{i \in I} A_i = \{ x : x \in A_i \text{ for some } i \in I \}$$

6. Which of these is not bijective?

- (a) The identity map $\mathbb{Z} \to \mathbb{Z}$
- (b) A 90° rotation of \mathbb{R}^2 about the origin
- (c) A translation of \mathbb{R}^3 by 3 units along an axis
- (d) The inclusion map $\mathbb{N} \hookrightarrow \mathbb{Z}$
- (e) None of the above

Choice (d), since the inclusion map is not surjective.

7. Given sets A and B, precisely define $A \times B$.

$$A \times B = \{(x, y) : x \in A \text{ and } y \in B\}$$

8. Give a precise definition of what it means for a real number x to be rational.

There exist integers m, n with n > 0 so that x = m/n.

Problems

1. Let a and b be integers. Prove that a + b is even if and only if $a^2 + b^2$ is even.

Proof. (\Rightarrow) Suppose that a + b is even. Find an integer k so that a + b = 2k; then

$$a^{2} + b^{2} = (a+b)^{2} - 2ab = 2 \cdot (2k^{2} - ab),$$

an even integer.

(\Leftarrow) Suppose that a + b is odd. Find an integer ℓ so that $a + b = 2\ell + 1$; then

$$a^{2} + b^{2} = (a + b)^{2} - 2ab = 2 \cdot (2\ell^{2} + 2\ell - ab) + 1,$$

an odd integer.

2. Let A and B be sets with $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$. Prove that either $A \subseteq B$ or $B \subseteq A$.

Proof. Assume that $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$ and $A \not\subseteq B$. Then there is an $x \in A$ so that $x \notin B$. We'll prove that $B \subseteq A$; take an arbitrary $y \in B$ and consider $S = \{x, y\}$. Then $S \subseteq A \cup B$ but $S \not\subseteq B$ (since $x \in S$ but $x \notin B$). That is, $S \in \mathcal{P}(A \cup B)$ and $S \notin \mathcal{P}(B)$. By our assumption about $\mathcal{P}(A \cup B)$ we must have $S \in \mathcal{P}(A)$. We've found that $\{x, y\} \subseteq A$, and in particular $y \in A$. This shows that $B \subseteq A$.

3. Suppose that $f: A \to B$ is an injective function and $S \subseteq A$. Prove that

$$f(A - S) = f(A) - f(S).$$

Proof. Suppose $y \in f(A) - f(S)$ and find $x \in A$ so that f(x) = y. If $x \in S$ then we would have $y \in f(S)$, contradicting our choice of y. So $x \in A - S$ and $y \in f(A - S)$. This shows $f(A - S) \subseteq f(A) - f(S)$.

Now suppose $y \in f(A - S)$ and find $x \in A - S$ so that f(x) = y. Since $x \in A$ we have $y \in f(A)$. Assume to the contrary that y is an element of f(S) as well. Then there is $z \in S$ so that f(z) = y. But then f(z) = f(x), and injectivity of f implies that x = z. In particular, $x \in S$, contradicting the fact that $x \in A - S$. So $y \notin f(S)$ and we deduce $y \in f(A) - f(S)$. This shows that $f(A) - f(S) \subseteq f(A - S)$. Altogether we conclude the two sets are equal, as desired.