Math 8, Summer 2012
 Exam 2 Solutions

Short Answer

1. Let S be a set with a relation R. Precisely define what it means for R to be reflexive.

For all $x \in S$ we have $x R x$.
2. Evaluate the sum $\binom{5}{0}+\binom{5}{1}+\binom{5}{2}+\binom{5}{3}+\binom{5}{4}+\binom{5}{5}$.

$$
2^{5}=32
$$

3. Dirichlet stuffs 316 pigeons into 21 holes. What's the largest number of pigeons we are guaranteed to see in a single hole?
$15 \cdot 21=315<316$. Hence we cannot have each hole containing at most 15 pigeons; there must be a hole with at least 16 pigeons.
4. A trichotomous relation \simeq on a set S is one with the following property:

For all $x, y \in S$, exactly one of the following is true: $x \simeq y, y \simeq x$, or $x=y$.
Give an example of such a relation.
The best-known example is inequality, $<$, on \mathbb{R}.
5. Given an equivalence relation \sim on a set S and $x \in S$, define the equivalence class $[x]$.

$$
[x]=\{y \in S: x \sim y\}
$$

6. Alice wants to prove $P(n)$ for all integers $n \geq 3$. She proves $\forall n \geq 3, P(n) \Rightarrow P(n+2)$. Which base cases are needed to complete the induction?

She needs two base cases, so she should prove $P(3)$ and $P(4)$.
7. Which of these is an equivalence relation on \mathbb{R} ?
(a) $x \sim y \Longleftrightarrow x-y \in \mathbb{Q}$
(b) $x \sim y \Longleftrightarrow x \leq y$
(c) $x \sim y \Longleftrightarrow x+y \in \mathbb{Z}$
(d) $x \sim y \Longleftrightarrow \sin x=\cos y$
(e) None of the above
(a) is the answer. (In brief, $x-x=0 \in \mathbb{Q}$ for any $x, x-y \in \mathbb{Q}$ implies $y-x=-(x-y) \in \mathbb{Q}$, and whenever $x-y, y-z \in \mathbb{Q}$ we have $x-z=(x-y)+(y-z) \in \mathbb{Q})$
8. Give a precise statement of the well-ordering principle.

Any nonempty subset of \mathbb{N} contains a smallest element.

Problems

1. Prove for all integers $n \geq 0$

$$
\int_{0}^{\infty} x^{n} e^{-x} d x=n!
$$

Proof. We proceed by induction on n. When $n=0$ we have

$$
\int_{0}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{\infty}=1=0!
$$

and the claim holds for $n=0$. Now assume the result holds for some $n \in \mathbb{N}$. It follows that

$$
\int_{0}^{\infty} x^{n+1} e^{-x} d x=-\left.x^{n+1} e^{-x}\right|_{0} ^{\infty}+\int_{0}^{\infty}(n+1) x^{n} e^{-x} d x=(0-0)+(n+1) \cdot n!=(n+1)!
$$

so the result holds for all $n \geq 0$.
2. On a spherical surface, define a closed hemisphere to be a hemisphere which includes its edge as part of the set. Given 5 arbitrary points on the surface of a sphere prove there is a closed hemisphere containing 4 of them.

Partial Solution. If we cut the sphere in half arbitrarily, we have two hemispheres and 5 points. By the pigeonhole principle, some 3 points are on the same hemisphere.

Full Solution. If we cut the sphere in half through 2 of the 5 points (that is, make sure some 2 points are on the equator), we have 2 hemispheres and 3 other points. By the pigeonhole principle, some 2 are on the same hemisphere. Together with the 2 on the equator, we have 4 on a closed hemisphere.
3. Fix a positive integer n. Given an integer $k \geq 0$ define $d(k)$ to be the number of permutations of k objects leaving no objects in their starting positions. Prove that

$$
\sum_{k=0}^{n}\binom{n}{k} d(k)=n!
$$

Proof. Consider permuting n objects in a row. There are $n!$ ways to do this. Alternatively, we could choose some number k of the objects that will move in $\binom{n}{k}$ ways and "derange" them-that is, permute without fixed points - in $d(k)$ ways. The other unchosen objects stay in their original positions. Summing over all k gives all ways of rearranging the objects, so the result follows.

