Math 118B, Winter 2012
 Final Solutions

March 22, 2012

Name

1. Prove that the function $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ is infinitely differentiable on $(1, \infty)$.

Proof. Define the functions

$$
f_{N}(s)=\sum_{n=1}^{N} \frac{1}{n^{s}}
$$

and notice that the derivatives satisfy

$$
f_{N}^{(m)}(s)=\sum_{n=1}^{N} \frac{(-\ln n)^{m}}{n^{s}}
$$

We'll prove that ζ is smooth on any set $[a, \infty)$, where $a>1$. Recall the theorem: if f_{n} converges pointwise and f_{n}^{\prime} converges uniformly, then the limit of the derivatives is the derivative of the limit (part of the conclusion is that the pointwise limit of the f_{n} is differentiable). On $[a, \infty)$ we have

$$
\left|\frac{(-\ln n)^{m}}{n^{s}}\right| \leq \frac{\ln ^{m} n}{n^{a}}
$$

and $\sum_{n}\left(\ln ^{m} n\right) / n^{a}$ converges for any m. Therefore $\left(f_{N}^{(m)}\right)$ converges uniformly on $[a, \infty)$ for each m by the Weierstrass M-test, implying that $\zeta^{(m)}(s)$ exists on $[a, \infty)$ for each $a>1$ and $m \in \mathbb{N}$. So ζ is infinitely differentiable on $(1, \infty)$.
2. Using only the definitions, prove that a space with the property that every sequence admits a convergent subsequence is complete.

Proof. Take a Cauchy sequence $\left(x_{n}\right)$ in the space, which then admits a convergent subsequence $\left(x_{n_{k}}\right)$ with some limit L. Given $\epsilon>0$ find N so that $d\left(x_{n}, x_{m}\right)<\epsilon / 2$ for all $n, m \geq N$. Find a point $x_{n_{k}}$ in the subsequence with $n_{k} \geq N$ and $d\left(x_{n_{k}}, L\right)<\epsilon / 2$. Then for all $n \geq N$,

$$
d\left(x_{n}, L\right) \leq d\left(x_{n}, x_{n_{k}}\right)+d\left(x_{n_{k}}, L\right)<\epsilon .
$$

3. Determine whether $\int_{1}^{\infty} \sin ^{2}\left(\frac{\ln x}{x}\right) d x$ converges.

Proof. Since $\ln x / x \geq 0$ and $\sin ^{2}(\ln x / x) \geq 0$ on $[1, \infty)$ we have

$$
\int_{1}^{\infty} \sin ^{2}\left(\frac{\ln x}{x}\right) d x \leq \int_{1}^{\infty}\left(\frac{\ln x}{x}\right)^{2} d x
$$

and it suffices to show that the latter integral converges. Recall that $\ln x<x$ for all $x \geq 1$; thus $\ln x^{1 / 3}<x^{1 / 3}$, or $\ln x<3 x^{1 / 3}$. Therefore

$$
\int_{1}^{\infty} \sin ^{2}\left(\frac{\ln x}{x}\right) d x \leq \int_{1}^{\infty} \frac{9}{x^{4 / 3}} d x<\infty
$$

so the original integral converges.
4. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and 2π-periodic. Furthermore for each nonnegative integer n,

$$
\int_{0}^{2 \pi} e^{i n \theta} f(\theta) d \theta=0
$$

Prove that $f \equiv 0$.
Proof. Taking complex conjugates, we have the orthogonality condition for all integers n, not just positive ones. Linearity of the integral implies that

$$
\int_{0}^{2 \pi} p(\theta) f(\theta) d \theta=0
$$

for any trigonometric polynomial p. The trig polynomials are dense in the space of $2 \pi-$ periodic continuous functions (in the uniform metric), so we can find $p_{n} \rightarrow f$ uniformly. On a bounded interval, uniform convergence allows the interchange of limit and integral, so

$$
0=\lim _{n \rightarrow \infty} \int_{0}^{2 \pi} p_{n}(\theta) f(\theta) d \theta=\int_{0}^{2 \pi} f^{2}(\theta) d \theta
$$

But f^{2} is continuous, nonnegative and integrates to zero. Hence $f \equiv 0$.
5. Prove there exists a unique continuous function $f:[0,1] \rightarrow \mathbb{R}$ so that

$$
f(x)-\int_{0}^{1} f(x-y) e^{-y} d y=\arctan (x)
$$

Proof. Define the linear operator $T: C[0,1] \rightarrow C[0,1]$ by

$$
T f(x)=\arctan (x)+\int_{0}^{1} f(x-y) e^{-y} d y
$$

Given $f, g \in C[0,1]$ we have that

$$
\|T f-T g\|_{\infty}=\left\|\int_{0}^{1}(f(x-y)-g(x-y)) e^{-y} d y\right\|_{\infty} \leq\|f-g\|_{\infty} \int_{0}^{1} e^{-y} d y
$$

Thus $\|T f-T g\|_{\infty} \leq e^{-1}\|f-g\|_{\infty}$, and T is a contraction. Since $C[0,1]$ is a complete metric space, the contraction mapping theorem implies that T has a unique fixed point.
6. Give an example of a subset $\mathcal{F} \subset C[0,1]$ which is uniformly bounded but not precompact (in the uniform metric).

Proof. Let $\mathcal{F}=\left\{x^{n}: n \in \mathbb{N}\right\}$. This family is uniformly bounded by 1 , but any subsequence $\left(x^{n_{k}}\right)$ converges pointwise to the discontinuous function

$$
f(x)= \begin{cases}0 & \text { if } 0 \leq x<1 \\ 1 & \text { if } x=1\end{cases}
$$

so the convergence cannot be uniform. That is, no sequence in \mathcal{F} has a uniformly convergent subsequence to a function in $C[0,1]$.
7. Fix $\alpha \in \mathbb{R} \backslash \mathbb{Z}$. Find the power series expansion at $x=0$ of the function f which solves

$$
\left\{\begin{array}{l}
(1-x) f^{\prime}(x)+\alpha f(x)=0 \\
f(0)=1
\end{array}\right.
$$

and compute its radius of convergence.
Proof. Let $f(x)=1+\sum_{n \geq 1} a_{n} x^{n}$. Substitute into the differential equation and perform tedious index chasing to find

$$
0=\left(\alpha+a_{1}\right)+\sum_{n=1}^{\infty}\left[(n+1) a_{n+1}-(n+\alpha) a_{n}\right] x^{n}
$$

for all x in a neighborhood of $x=0$. Thus each coefficient vanishes and we find

$$
\left\{\begin{array}{l}
a_{1}=-\alpha \\
a_{n+1}=a_{n}(n+\alpha) /(n+1) \quad \text { for all } n \geq 1
\end{array}\right.
$$

This recurrence lends itself to the ratio test:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n+\alpha}{n+1}\right|=1
$$

so the radius of convergence is 1 . The first few terms of the series are

$$
f(x)=1-\alpha x+\frac{\alpha(\alpha-1)}{2} x^{2}-\frac{\alpha(\alpha-1)(\alpha-2)}{6} x^{3}+\cdots
$$

By the way, $f(x)=(1-x)^{\alpha}$.
8. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable and that $F^{\prime}=f$ for some function F. Prove that

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Proof. Given a partition $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b$ rewrite $F(b)-F(a)$ as a telescoping series and use the mean-value theorem:

$$
F(b)-F(a)=\sum_{k=1}^{n} F\left(x_{k}\right)-F\left(x_{k-1}\right)=\sum_{k=1}^{n} F^{\prime}\left(c_{k}\right)\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n} f\left(c_{k}\right)\left(x_{k}-x_{k-1}\right),
$$

where $c_{k} \in\left(x_{k-1}, x_{k}\right)$. The equation

$$
F(b)-F(a)=\sum_{k=1}^{n} f\left(c_{k}\right)\left(x_{k}-x_{k-1}\right)
$$

holds for any partition, so taking the mesh to 0 gives the result.
9. Prove Dini's theorem:

Theorem. Let X be a compact metric space and $\left(f_{n}\right)$ be a sequence of real-valued continuous functions which converge pointwise to a continuous function f. If the functions satisfy $f_{1} \geq f_{2} \geq f_{3} \geq \cdots$, then the convergence is uniform.

Proof. Let $\epsilon>0$. Define the sets $U_{n}=\left\{x \in X: f_{n}(x)-f(x)<\epsilon\right\}$. These sets are open since each function $f_{n}-f$ is continuous. The monotonicity of the sequence $\left(f_{n}\right)$ implies that $U_{1} \subseteq U_{2} \subseteq \cdots$; the pointwise convergence of $\left(f_{n}\right)$ implies that each point in the space lies in some U_{n}. That is, we have an open cover of the compact space X. There exists a finite subcover U_{1}, \ldots, U_{N}, but $X=U_{1} \cup \cdots \cup U_{N}=U_{N}$ due to the nested condition. Furthermore, for any $n \geq N$ we have $X=U_{N} \subseteq U_{n} \subseteq X$, so that $U_{n}=X$. In other words, $f_{n}(x)-f(x)<\epsilon$ for all $x \in X$ and $n \geq N$, as desired.
10. Define $\operatorname{Lip}[0,1] \subset C[0,1]$ as the set of functions f for which there is a constant K such that for all $x, y \in[0,1]$

$$
|f(x)-f(y)| \leq K|x-y| .
$$

Suppose that a sequence of functions $\left(f_{n}\right)$ in $\operatorname{Lip}[0,1]$ share the same Lipschitz constant K. Prove that if the sequence converges pointwise, then it converges uniformly.

Proof. If a sequence $\left(f_{n}\right)$ in $\operatorname{Lip}[0,1]$ has a single Lipschitz constant K, then clearly the sequence is equicontinuous. Assuming the sequence converges pointwise, the sequence of numbers $\left(f_{n}(0)\right)$ is bounded by some $M>0$. Thus for any $x \in[0,1]$ we have

$$
\left|f_{n}(x)\right| \leq\left|f_{n}(0)\right|+\left|f_{n}(x)-f_{n}(0)\right| \leq M+K|x| \leq K+M
$$

so the sequence is uniformly bounded. By Arzelá-Ascoli, the sequence is precompact in the uniform metric.
The sequence f_{n} converges pointwise to a limit function f, so any uniformly convergent subsequence must have limit f. If the entire sequence did not converge uniformly, there would be $\epsilon>0$ and a subsequence $\left(f_{n_{k}}\right)$ so that

$$
\left\|f_{n_{k}}-f\right\|_{\infty} \geq \epsilon
$$

for all k. But this sequence could not have a subsequence converging uniformly to f, which is a contradiction.

