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1. Prove that the function ζ(s) =
∞∑
n=1

1

ns
is infinitely differentiable on (1,∞).

Proof. Define the functions

fN(s) =
N∑
n=1

1

ns

and notice that the derivatives satisfy

f
(m)
N (s) =

N∑
n=1

(− lnn)m

ns
.

We’ll prove that ζ is smooth on any set [a,∞), where a > 1. Recall the theorem: if
fn converges pointwise and f ′n converges uniformly, then the limit of the derivatives is
the derivative of the limit (part of the conclusion is that the pointwise limit of the fn is
differentiable). On [a,∞) we have ∣∣∣∣(− lnn)m

ns

∣∣∣∣ ≤ lnm n

na
,

and
∑

n(lnm n)/na converges for any m. Therefore (f
(m)
N ) converges uniformly on [a,∞) for

each m by the Weierstrass M -test, implying that ζ(m)(s) exists on [a,∞) for each a > 1
and m ∈ N. So ζ is infinitely differentiable on (1,∞).



2. Using only the definitions, prove that a space with the property that every sequence admits
a convergent subsequence is complete.

Proof. Take a Cauchy sequence (xn) in the space, which then admits a convergent sub-
sequence (xnk

) with some limit L. Given ε > 0 find N so that d(xn, xm) < ε/2 for all
n,m ≥ N . Find a point xnk

in the subsequence with nk ≥ N and d(xnk
, L) < ε/2. Then

for all n ≥ N ,
d(xn, L) ≤ d(xn, xnk

) + d(xnk
, L) < ε.



3. Determine whether

∫ ∞
1

sin2

(
lnx

x

)
dx converges.

Proof. Since lnx/x ≥ 0 and sin2(lnx/x) ≥ 0 on [1,∞) we have∫ ∞
1

sin2

(
lnx

x

)
dx ≤

∫ ∞
1

(
lnx

x

)2

dx,

and it suffices to show that the latter integral converges. Recall that lnx < x for all x ≥ 1;
thus lnx1/3 < x1/3, or lnx < 3x1/3. Therefore∫ ∞

1

sin2

(
lnx

x

)
dx ≤

∫ ∞
1

9

x4/3
dx <∞,

so the original integral converges.



4. Suppose that f : R→ R is continuous and 2π-periodic. Furthermore for each nonnegative
integer n, ∫ 2π

0

einθf(θ) dθ = 0.

Prove that f ≡ 0.

Proof. Taking complex conjugates, we have the orthogonality condition for all integers n,
not just positive ones. Linearity of the integral implies that∫ 2π

0

p(θ)f(θ) dθ = 0

for any trigonometric polynomial p. The trig polynomials are dense in the space of 2π-
periodic continuous functions (in the uniform metric), so we can find pn → f uniformly. On
a bounded interval, uniform convergence allows the interchange of limit and integral, so

0 = lim
n→∞

∫ 2π

0

pn(θ)f(θ) dθ =

∫ 2π

0

f 2(θ) dθ.

But f 2 is continuous, nonnegative and integrates to zero. Hence f ≡ 0.



5. Prove there exists a unique continuous function f : [0, 1]→ R so that

f(x)−
∫ 1

0

f(x− y)e−y dy = arctan(x).

Proof. Define the linear operator T : C[0, 1]→ C[0, 1] by

Tf(x) = arctan(x) +

∫ 1

0

f(x− y)e−y dy.

Given f, g ∈ C[0, 1] we have that

‖Tf − Tg‖∞ =

∥∥∥∥∫ 1

0

(f(x− y)− g(x− y))e−y dy

∥∥∥∥
∞
≤ ‖f − g‖∞

∫ 1

0

e−y dy.

Thus ‖Tf−Tg‖∞ ≤ e−1‖f−g‖∞, and T is a contraction. Since C[0, 1] is a complete metric
space, the contraction mapping theorem implies that T has a unique fixed point.



6. Give an example of a subset F ⊂ C[0, 1] which is uniformly bounded but not precompact
(in the uniform metric).

Proof. Let F = {xn : n ∈ N}. This family is uniformly bounded by 1, but any subsequence
(xnk) converges pointwise to the discontinuous function

f(x) =

{
0 if 0 ≤ x < 1

1 if x = 1

so the convergence cannot be uniform. That is, no sequence in F has a uniformly convergent
subsequence to a function in C[0, 1].



7. Fix α ∈ R \ Z. Find the power series expansion at x = 0 of the function f which solves{
(1− x)f ′(x) + αf(x) = 0

f(0) = 1

and compute its radius of convergence.

Proof. Let f(x) = 1 +
∑

n≥1 anx
n. Substitute into the differential equation and perform

tedious index chasing to find

0 = (α + a1) +
∞∑
n=1

[(n+ 1)an+1 − (n+ α)an]xn

for all x in a neighborhood of x = 0. Thus each coefficient vanishes and we find{
a1 = −α
an+1 = an(n+ α)/(n+ 1) for all n ≥ 1

This recurrence lends itself to the ratio test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣n+ α

n+ 1

∣∣∣∣ = 1,

so the radius of convergence is 1. The first few terms of the series are

f(x) = 1− αx+
α(α− 1)

2
x2 − α(α− 1)(α− 2)

6
x3 + · · · .

By the way, f(x) = (1− x)α.



8. Suppose that f : [a, b] → R is Riemann integrable and that F ′ = f for some function F .
Prove that ∫ b

a

f(x) dx = F (b)− F (a).

Proof. Given a partition a = x0 < x1 < x2 < · · · < xn = b rewrite F (b) − F (a) as a
telescoping series and use the mean-value theorem:

F (b)− F (a) =
n∑
k=1

F (xk)− F (xk−1) =
n∑
k=1

F ′(ck)(xk − xk−1) =
n∑
k=1

f(ck)(xk − xk−1),

where ck ∈ (xk−1, xk). The equation

F (b)− F (a) =
n∑
k=1

f(ck)(xk − xk−1)

holds for any partition, so taking the mesh to 0 gives the result.



9. Prove Dini’s theorem:

Theorem. Let X be a compact metric space and (fn) be a sequence of real-valued continuous
functions which converge pointwise to a continuous function f . If the functions satisfy
f1 ≥ f2 ≥ f3 ≥ · · · , then the convergence is uniform.

Proof. Let ε > 0. Define the sets Un = {x ∈ X : fn(x) − f(x) < ε}. These sets are open
since each function fn − f is continuous. The monotonicity of the sequence (fn) implies
that U1 ⊆ U2 ⊆ · · · ; the pointwise convergence of (fn) implies that each point in the space
lies in some Un. That is, we have an open cover of the compact space X. There exists
a finite subcover U1, . . . , UN , but X = U1 ∪ · · · ∪ UN = UN due to the nested condition.
Furthermore, for any n ≥ N we have X = UN ⊆ Un ⊆ X, so that Un = X. In other words,
fn(x)− f(x) < ε for all x ∈ X and n ≥ N , as desired.



10. Define Lip[0, 1] ⊂ C[0, 1] as the set of functions f for which there is a constant K such that
for all x, y ∈ [0, 1]

|f(x)− f(y)| ≤ K|x− y|.
Suppose that a sequence of functions (fn) in Lip[0, 1] share the same Lipschitz constant K.
Prove that if the sequence converges pointwise, then it converges uniformly.

Proof. If a sequence (fn) in Lip[0, 1] has a single Lipschitz constant K, then clearly the
sequence is equicontinuous. Assuming the sequence converges pointwise, the sequence of
numbers (fn(0)) is bounded by some M > 0. Thus for any x ∈ [0, 1] we have

|fn(x)| ≤ |fn(0)|+ |fn(x)− fn(0)| ≤M +K|x| ≤ K +M,

so the sequence is uniformly bounded. By Arzelá-Ascoli, the sequence is precompact in the
uniform metric.

The sequence fn converges pointwise to a limit function f , so any uniformly convergent
subsequence must have limit f . If the entire sequence did not converge uniformly, there
would be ε > 0 and a subsequence (fnk

) so that

‖fnk
− f‖∞ ≥ ε

for all k. But this sequence could not have a subsequence converging uniformly to f , which
is a contradiction.


