
Math 8 Homework 1 Solutions

1 Logical Statements

(a) A set S is not compact iff either S isn’t closed or S isn’t bounded.

(b) We can write uniform continuity as

∀ε > 0 ∃δ > 0 s.t ∀x, y ∈ R, |x− y| < δ =⇒ |f(x)− f(y)| < ε.

The negation is

There is ε > 0 so that for any δ > 0 there are x, y ∈ R so that |x− y| < δ and |f(x)− f(y)| ≥ ε.

(c) (i) This is true, since the size of G would be a multiple of 14, hence even.

(ii) Actually, H could have size 1, which is not even.

(iii) This need not follow. This is a well–known fact about the so–called alternating group A4.

2 Direct and Contradiction Proof

(a) Proof. (⇒) Suppose that n is even. Then there is k ∈ Z so that n = 2k. But then n2 = 2 · (2k2), which is
even.

(⇐) Suppose that n is not even. Then there is k ∈ Z so that n = 2k+ 1. Then n2 = 2 · (2k2 + 2k) + 1, which
is not even.

(b) Proof. Assume to the contrary that
√

2 is rational. Then we can write
√

2 = m/n, where not both m,n are
even. It follows that m2 = 2n2. Since m2 is even, m is even as well (by the previous problem). We can write
m = 2k for some integer k. This implies n2 = 2k2, which implies n is even. This however contradicts our
assumption that not both m and n should be even. Hence

√
2 is irrational.

(c) This is sort of a trick question. Notice that both
√

2 and −
√

2 are irrational; their sum (zero) is rational.

(d) Proof. Let x =
√

2
√
2
. It’s not clear whether x is rational; if it is we’re done. If however x is irrational, then

notice that x
√
2 = 2, a rational number. So either x or x

√
2 satisfies the required condition.

(e) The proof is invalid because it assumes its conclusion to be true. Note that the same sort of reasoning can
show that −1 = 1 (proof: square both sides). Rather, we can can proceed as follows:

Proof. Assume to the contrary that
√

6 +
√

2 ≥ 4. Since all quantities are positive, we can square both sides
to obtain 8 + 2

√
12 ≥ 16. Then we have

√
12 ≥ 4. Again we can square to find 12 ≥ 16. This contradiction

proves the result.

3 Quantifiers

(a) Proof. Let f(x) = (1−x) cosx− sinx. Notice that f(0) = 1 > 0 and f(1) = − sin 1 < 0. By the intermediate
value theorem f has a root in (0, 1), as desired.

(b) Proof. Define g(x) = f(x+1)−f(x). If either g(0) or g(1) is zero, we’re done. Otherwise, g(1) = f(1)−f(0) =
f(1)−f(2) = −g(0). Whether g(0) is positive or negative, then g(1) is the opposite sign; by the intermediate
value theorem, g has a root in (0, 1), as desired.

(c) Proof. Let ε > 0. Find an integer N so that N > 1/ε. Given any integers n > m ≥ N we have

1

m
− 1

n
<

1

m
≤ 1

N
< ε.

(d) When n = 41 we have n2 + n+ 41 = 41 · 43, which is not prime.



(e) Proof. Assume to the contrary that f ′(x) ≥ 1 + f(x)2 for all x ∈ (0, 4). Then we can write

f ′(x)

1 + f(x)2
≥ 1.

Integrating from 0 to 4 preserves the inequality:

arctan f(4)− arctan f(0) =

∫ 4

0

f ′(x)

1 + f(x)2
dx ≥

∫ 4

0

dx = 4.

No matter what values f(0) and f(4) are, two values of arctan can never differ by more than π. We conclude
that π > 4, a contradiction.


