Math 8 Homework 1 Solutions

1 Logical Statements

(a) A set S is not compact iff either S isn't closed or S isn't bounded.
(b) We can write uniform continuity as

$$
\forall \epsilon>0 \exists \delta>0 \text { s.t } \forall x, y \in \mathbb{R},|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\epsilon .
$$

The negation is
There is $\epsilon>0$ so that for any $\delta>0$ there are $x, y \in \mathbb{R}$ so that $|x-y|<\delta$ and $|f(x)-f(y)| \geq \epsilon$.
(c) (i) This is true, since the size of G would be a multiple of 14 , hence even.
(ii) Actually, H could have size 1, which is not even.
(iii) This need not follow. This is a well-known fact about the so-called alternating group A_{4}.

2 Direct and Contradiction Proof

(a) Proof. (\Rightarrow) Suppose that n is even. Then there is $k \in \mathbb{Z}$ so that $n=2 k$. But then $n^{2}=2 \cdot\left(2 k^{2}\right)$, which is even.
(\Leftarrow) Suppose that n is not even. Then there is $k \in \mathbb{Z}$ so that $n=2 k+1$. Then $n^{2}=2 \cdot\left(2 k^{2}+2 k\right)+1$, which is not even.
(b) Proof. Assume to the contrary that $\sqrt{2}$ is rational. Then we can write $\sqrt{2}=m / n$, where not both m, n are even. It follows that $m^{2}=2 n^{2}$. Since m^{2} is even, m is even as well (by the previous problem). We can write $m=2 k$ for some integer k. This implies $n^{2}=2 k^{2}$, which implies n is even. This however contradicts our assumption that not both m and n should be even. Hence $\sqrt{2}$ is irrational.
(c) This is sort of a trick question. Notice that both $\sqrt{2}$ and $-\sqrt{2}$ are irrational; their sum (zero) is rational.
(d) Proof. Let $x=\sqrt{2}^{\sqrt{2}}$. It's not clear whether x is rational; if it is we're done. If however x is irrational, then notice that $x^{\sqrt{2}}=2$, a rational number. So either x or $x^{\sqrt{2}}$ satisfies the required condition.
(e) The proof is invalid because it assumes its conclusion to be true. Note that the same sort of reasoning can show that $-1=1$ (proof: square both sides). Rather, we can can proceed as follows:

Proof. Assume to the contrary that $\sqrt{6}+\sqrt{2} \geq 4$. Since all quantities are positive, we can square both sides to obtain $8+2 \sqrt{12} \geq 16$. Then we have $\sqrt{12} \geq 4$. Again we can square to find $12 \geq 16$. This contradiction proves the result.

3 Quantifiers

(a) Proof. Let $f(x)=(1-x) \cos x-\sin x$. Notice that $f(0)=1>0$ and $f(1)=-\sin 1<0$. By the intermediate value theorem f has a root in $(0,1)$, as desired.
(b) Proof. Define $g(x)=f(x+1)-f(x)$. If either $g(0)$ or $g(1)$ is zero, we're done. Otherwise, $g(1)=f(1)-f(0)=$ $f(1)-f(2)=-g(0)$. Whether $g(0)$ is positive or negative, then $g(1)$ is the opposite sign; by the intermediate value theorem, g has a root in $(0,1)$, as desired.
(c) Proof. Let $\epsilon>0$. Find an integer N so that $N>1 / \epsilon$. Given any integers $n>m \geq N$ we have

$$
\frac{1}{m}-\frac{1}{n}<\frac{1}{m} \leq \frac{1}{N}<\epsilon
$$

(d) When $n=41$ we have $n^{2}+n+41=41 \cdot 43$, which is not prime.
(e) Proof. Assume to the contrary that $f^{\prime}(x) \geq 1+f(x)^{2}$ for all $x \in(0,4)$. Then we can write

$$
\frac{f^{\prime}(x)}{1+f(x)^{2}} \geq 1 .
$$

Integrating from 0 to 4 preserves the inequality:

$$
\arctan f(4)-\arctan f(0)=\int_{0}^{4} \frac{f^{\prime}(x)}{1+f(x)^{2}} d x \geq \int_{0}^{4} d x=4
$$

No matter what values $f(0)$ and $f(4)$ are, two values of arctan can never differ by more than π. We conclude that $\pi>4$, a contradiction.

