Math 8 Homework 2 Solutions

1 Set Basics

(a) False. If $A=\varnothing$ and $B=\{1\}$ is nonempty, then $A \cup B=\{1\}$ while $A \cap B=\varnothing$.
(b) True. The statement $\varnothing \in \mathcal{P}(A)$ is equivalent to the statement $\varnothing \subseteq A$; that is, whenever $x \in \varnothing$ we also have $x \in A$. This "if, then" statement is vacuously true since $x \in \varnothing$ is never true.
(c) True. Note that $\{\varnothing\} \in \mathcal{P}(\{\varnothing,\{\varnothing\}\})$ is equivalent to $\{\varnothing\} \subseteq\{\varnothing,\{\varnothing\}\}$. This occurs if and only if $\varnothing \in$ $\{\varnothing,\{\varnothing\}\}$, which is true.
(d) False. Consider $A=\{1\}$ and $B=\{2\}$. Then $\{1,2\} \subseteq A \cup B$, although $\{1,2\}$ is a subset of neither A nor B. This means $\{1,2\} \in \mathcal{P}(A \cup B)$, whereas $\{1,2\} \notin \mathcal{P}(A) \cup \mathcal{P}(B)$.
(e) False. No matter what A and B are, $\varnothing \in \mathcal{P}(A \times B)$. On the other hand, $\varnothing \notin \mathcal{P}(A) \times \mathcal{P}(B)$ since the product of sets contains only ordered pairs.

2 Set Proofs

(a) Proof. (\Leftarrow) Suppose that $A \subseteq \varnothing$. Since $\varnothing \subseteq A$ no matter what A is, this shows that $A=\varnothing$.
(\Rightarrow) Suppose that $A=\varnothing$. This immediately implies that $A \subseteq \varnothing$.
(b) Proof. (\Leftarrow) Suppose that $A \cup B=A$. Given an arbitrary $x \in B$, we see that $x \in A \cup B=A$. Hence $B \subseteq A$. (\Rightarrow) Suppose that $B \subseteq A$. Given $x \in A \cup B$, either $x \in A$ or $x \in B$; however $B \subseteq A$ implies that in either case $x \in A$. Therefore $A \cup B \subseteq A$. On the other hand, $A \subseteq A \cup B$ is generally true. We conclude that $A=A \cup B$.
(c) Proof. Suppose that $A \neq \varnothing$ and $A \times B=\varnothing$. Assume for sake of contradiction that $B \neq \varnothing$. We can find $x \in A$ and $y \in B$, so that $(x, y) \in A \times B$, contradicting the fact that $A \times B$ is empty. Hence $B=\varnothing$.
(d) Proof. Suppose that $\mathcal{P}(A)-\mathcal{P}(B) \subseteq \mathcal{P}(A-B)$ and that $A \cap B$ is nonempty. Fix $x \in A \cap B$ and assume we can find $y \in A$ such that $y \notin B$. Since x and y are both elements of A, we have $\{x, y\} \subseteq A$. On the other hand, since $y \notin B$ we see that $\{x, y\} \nsubseteq B$. Therefore $\{x, y\} \in \mathcal{P}(A)-\mathcal{P}(B)$. We deduce that $\{x, y\} \in \mathcal{P}(A-B)$; that is, $\{x, y\} \subseteq A-B$. In particular $x \in A-B$, which implies that $x \notin B$. This contradicts the fact that $x \in A \cap B$, so our assumption that y exists was false. We conclude that $A \subseteq B$ as desired.
(e) Proof. Assume that $A \cup B \subseteq C \cup D, A \cap B=\varnothing$, and $C \subseteq A$. Let $x \in B$ and note that $x \notin A$, lest $A \cap B$ be nonempty. It follows that $x \notin C$. We know that x is an element of $A \cup B$, hence of $C \cup D$ as well. Since $x \notin C$, we conclude that x must be an element of D. That is, $B \subseteq D$.
(f) Proof. Let $x \in A \Delta \varnothing$. Then either $x \in A-\varnothing$ or $x \in \varnothing-A$. If x were an element of $\varnothing-A$, then x would be an element of the empty set. This cannot be, so $x \in A-\varnothing$. In particular, $x \in A$ and we deduce that $A \Delta \varnothing \subseteq A$. Now consider an arbitrary $y \in A$. Since $y \notin \varnothing$, we have $y \in A-\varnothing$. We conclude that $y \in A \Delta \varnothing$, hence $A \subseteq A \Delta \varnothing$. It follows that $A=A \Delta \varnothing$.
(g) Proof. (\Leftarrow) Suppose that $A \Delta B=\varnothing$. Assume we can find an x in A but not in B. Then $x \in A-B$, hence $x \in A \Delta B$. This contradicts the fact that $A \Delta B$ is empty, so no such x exists. That is, $A \subseteq B$. The same argument shows that $B \subseteq A$ as well, so $A=B$.
(\Rightarrow) Suppose that $A=B$. Then any element of A is an element of B and vice versa, so both $A-B$ and $B-A$ are empty. That is, $A \Delta B=\varnothing$.
(h) The statement is true. Let $x \in(A \Delta B) \Delta C$. Then either $x \in(A \Delta B)-C$ or $x \in C-(A \Delta B)$. First suppose that $x \in(A \Delta B)-C$; then $x \in A \Delta B$ and $x \notin C$. Moreover, either $x \in A-B$ or $x \in B-A$. If $x \in A-B$ then $x \in A$ and $x \notin B$. Since $x \notin C$ as well, we have $x \notin B \Delta C$ and finally $x \in A \Delta(B \Delta C)$. If instead $x \in B-A$ then from $x \notin C$ we have $x \in B-C$. Thus $x \in B \Delta C$; since $x \notin A$, we see $x \in A \Delta(B \Delta C)$.
Now, returning to the beginning, suppose that $x \in C-(A \Delta B)$ instead. Then $x \in C$ and $x \notin A \Delta B$. If $x \in A$ then $x \in B$ as well, lest $x \in A \Delta B$. Since x is an element of both B and C, we have $x \notin B \Delta C$. Hence $x \in A \Delta(B \Delta C)$. On the other hand if $x \notin A$, then $x \notin B$ as well-otherwise $x \in A \Delta B$ would follow. Since x
is an element of C but not B, we have $x \in B \Delta C$. Together with the fact that $x \notin A$, we find $x \in A \Delta(B \Delta C)$. Finally we conclude that $(A \Delta B) \Delta C \subseteq A \Delta(B \Delta C)$.
The same argument proves the opposite inclusion, so $(A \Delta B) \Delta C=A \Delta(B \Delta C)$, as desired. Whew.

3 Indexed Collections

(a) The statement is not generally true. Suppose that B is any nonempty set and that some $A_{i}=B$ while another $A_{j}=\varnothing$. Then the intersection of the sets $\left(A_{i}\right)$ is empty and we have

$$
B-\left(\bigcap_{i \in I} A_{i}\right)=B-\varnothing=B
$$

On the other hand one of the sets $B-A_{i}$ is empty as well, so

$$
\bigcap_{i \in I}\left(B-A_{i}\right)=\varnothing
$$

As we can see, the two sets are different.
(b) Proof. For simplicity we denote $A_{0}=\{x \in \mathbb{R}: f(x)>0\}$ and $A_{n}=\{x \in \mathbb{R}: f(x) \geq 1 / n\}$ for each $n \in \mathbb{N}$. Given $x \in A_{0}$ we can find $m \in \mathbb{N}$ so that $1 / m \leq f(x)$ (we'll accept this as intuitively clear, but one could prove this fact carefully). Thus $x \in A_{m}$ and moreover $x \in \cup_{n} A_{n}$. Conversely if x is an element of the aforementioned union, then for some m we have $x \in A_{m}$. This implies that $f(x) \geq 1 / m$. In particular $f(x)>0$, so $x \in A_{0}$.
(c) Proof. Let $x \in I$. Then for some $n \in \mathbb{N}$ we have

$$
x \in \bigcap_{m=n}^{\infty} A_{m}
$$

That is, x is an element of A_{m} for each $m \geq n$ (we could say " x is in all but finitely many of the sets"). To show that $x \in S$, we need to show that

$$
x \in \bigcup_{m=N}^{\infty} A_{m}
$$

for an arbitrary $N \in \mathbb{N}$. Indeed, taking m to be the larger of N and n we see that x is an element of A_{m} as well as the union in equation (\star) above. As x was arbitrary, $x \in S$ implies $I \subseteq S$.
(d) Consider the sequence of sets $A_{1}=\{1\}, A_{2}=\varnothing, A_{3}=\{1\}, A_{4}=\varnothing, A_{5}=\{1\}, \ldots$ and note that \varnothing repeatedly appears, even arbitrarily far down the sequence. That is,

$$
\bigcap_{m=n}^{\infty} A_{m}=\varnothing
$$

for any n. Hence the set I is empty (since it is a union of empty sets). On the other hand,

$$
\bigcup_{m=n}^{\infty} A_{m}=\{1\}
$$

for all n. Therefore $S=\{1\}$ and $I \neq S$.

