
Math 8 Homework 2 Solutions

1 Set Basics

(a) False. If A = ∅ and B = {1} is nonempty, then A ∪B = {1} while A ∩B = ∅.

(b) True. The statement ∅ ∈ P(A) is equivalent to the statement ∅ ⊆ A; that is, whenever x ∈ ∅ we also have
x ∈ A. This “if, then” statement is vacuously true since x ∈ ∅ is never true.

(c) True. Note that {∅} ∈ P({∅, {∅}}) is equivalent to {∅} ⊆ {∅, {∅}}. This occurs if and only if ∅ ∈
{∅, {∅}}, which is true.

(d) False. Consider A = {1} and B = {2}. Then {1, 2} ⊆ A ∪B, although {1, 2} is a subset of neither A nor B.
This means {1, 2} ∈ P(A ∪B), whereas {1, 2} /∈ P(A) ∪ P(B).

(e) False. No matter what A and B are, ∅ ∈ P(A×B). On the other hand, ∅ /∈ P(A)×P(B) since the product
of sets contains only ordered pairs.

2 Set Proofs

(a) Proof. (⇐) Suppose that A ⊆ ∅. Since ∅ ⊆ A no matter what A is, this shows that A = ∅.
(⇒) Suppose that A = ∅. This immediately implies that A ⊆ ∅.

(b) Proof. (⇐) Suppose that A ∪B = A. Given an arbitrary x ∈ B, we see that x ∈ A ∪B = A. Hence B ⊆ A.
(⇒) Suppose that B ⊆ A. Given x ∈ A ∪ B, either x ∈ A or x ∈ B; however B ⊆ A implies that in either
case x ∈ A. Therefore A ∪ B ⊆ A. On the other hand, A ⊆ A ∪ B is generally true. We conclude that
A = A ∪B.

(c) Proof. Suppose that A 6= ∅ and A × B = ∅. Assume for sake of contradiction that B 6= ∅. We can find
x ∈ A and y ∈ B, so that (x, y) ∈ A×B, contradicting the fact that A×B is empty. Hence B = ∅.

(d) Proof. Suppose that P(A)−P(B) ⊆ P(A−B) and that A∩B is nonempty. Fix x ∈ A∩B and assume we can
find y ∈ A such that y /∈ B. Since x and y are both elements of A, we have {x, y} ⊆ A. On the other hand,
since y /∈ B we see that {x, y} 6⊆ B. Therefore {x, y} ∈ P(A) − P(B). We deduce that {x, y} ∈ P(A − B);
that is, {x, y} ⊆ A − B. In particular x ∈ A − B, which implies that x /∈ B. This contradicts the fact that
x ∈ A ∩B, so our assumption that y exists was false. We conclude that A ⊆ B as desired.

(e) Proof. Assume that A ∪ B ⊆ C ∪D, A ∩ B = ∅, and C ⊆ A. Let x ∈ B and note that x /∈ A, lest A ∩ B
be nonempty. It follows that x /∈ C. We know that x is an element of A ∪B, hence of C ∪D as well. Since
x /∈ C, we conclude that x must be an element of D. That is, B ⊆ D.

(f) Proof. Let x ∈ A∆∅. Then either x ∈ A − ∅ or x ∈ ∅ − A. If x were an element of ∅ − A, then x would
be an element of the empty set. This cannot be, so x ∈ A − ∅. In particular, x ∈ A and we deduce that
A∆∅ ⊆ A. Now consider an arbitrary y ∈ A. Since y /∈ ∅, we have y ∈ A−∅. We conclude that y ∈ A∆∅,
hence A ⊆ A∆∅. It follows that A = A∆∅.

(g) Proof. (⇐) Suppose that A∆B = ∅. Assume we can find an x in A but not in B. Then x ∈ A − B, hence
x ∈ A∆B. This contradicts the fact that A∆B is empty, so no such x exists. That is, A ⊆ B. The same
argument shows that B ⊆ A as well, so A = B.
(⇒) Suppose that A = B. Then any element of A is an element of B and vice versa, so both A − B and
B −A are empty. That is, A∆B = ∅.

(h) The statement is true. Let x ∈ (A∆B)∆C. Then either x ∈ (A∆B)− C or x ∈ C − (A∆B). First suppose
that x ∈ (A∆B)−C; then x ∈ A∆B and x /∈ C. Moreover, either x ∈ A−B or x ∈ B−A. If x ∈ A−B then
x ∈ A and x /∈ B. Since x /∈ C as well, we have x /∈ B∆C and finally x ∈ A∆(B∆C). If instead x ∈ B − A
then from x /∈ C we have x ∈ B − C. Thus x ∈ B∆C; since x /∈ A, we see x ∈ A∆(B∆C).

Now, returning to the beginning, suppose that x ∈ C − (A∆B) instead. Then x ∈ C and x /∈ A∆B. If
x ∈ A then x ∈ B as well, lest x ∈ A∆B. Since x is an element of both B and C, we have x /∈ B∆C. Hence
x ∈ A∆(B∆C). On the other hand if x /∈ A, then x /∈ B as well—otherwise x ∈ A∆B would follow. Since x



is an element of C but not B, we have x ∈ B∆C. Together with the fact that x /∈ A, we find x ∈ A∆(B∆C).
Finally we conclude that (A∆B)∆C ⊆ A∆(B∆C).

The same argument proves the opposite inclusion, so (A∆B)∆C = A∆(B∆C), as desired. Whew.

3 Indexed Collections

(a) The statement is not generally true. Suppose that B is any nonempty set and that some Ai = B while
another Aj = ∅. Then the intersection of the sets (Ai) is empty and we have

B −

(⋂
i∈I

Ai

)
= B −∅ = B.

On the other hand one of the sets B −Ai is empty as well, so⋂
i∈I

(B −Ai) = ∅.

As we can see, the two sets are different.

(b) Proof. For simplicity we denote A0 = {x ∈ R : f(x) > 0} and An = {x ∈ R : f(x) ≥ 1/n} for each n ∈ N.
Given x ∈ A0 we can find m ∈ N so that 1/m ≤ f(x) (we’ll accept this as intuitively clear, but one could
prove this fact carefully). Thus x ∈ Am and moreover x ∈ ∪nAn. Conversely if x is an element of the
aforementioned union, then for some m we have x ∈ Am. This implies that f(x) ≥ 1/m. In particular
f(x) > 0, so x ∈ A0.

(c) Proof. Let x ∈ I. Then for some n ∈ N we have

x ∈
∞⋂

m=n

Am.

That is, x is an element of Am for each m ≥ n (we could say “x is in all but finitely many of the sets”). To
show that x ∈ S, we need to show that

x ∈
∞⋃

m=N

Am. (?)

for an arbitrary N ∈ N. Indeed, taking m to be the larger of N and n we see that x is an element of Am as
well as the union in equation (?) above. As x was arbitrary, x ∈ S implies I ⊆ S.

(d) Consider the sequence of sets A1 = {1}, A2 = ∅, A3 = {1}, A4 = ∅, A5 = {1}, . . . and note that ∅ repeatedly
appears, even arbitrarily far down the sequence. That is,

∞⋂
m=n

Am = ∅

for any n. Hence the set I is empty (since it is a union of empty sets). On the other hand,

∞⋃
m=n

Am = {1}

for all n. Therefore S = {1} and I 6= S.


