1 Set Basics

- (a) False. If $A = \emptyset$ and $B = \{1\}$ is nonempty, then $A \cup B = \{1\}$ while $A \cap B = \emptyset$.
- (b) True. The statement $\emptyset \in \mathcal{P}(A)$ is equivalent to the statement $\emptyset \subseteq A$; that is, whenever $x \in \emptyset$ we also have $x \in A$. This "if, then" statement is vacuously true since $x \in \emptyset$ is never true.
- (c) True. Note that $\{\emptyset\} \in \mathcal{P}(\{\emptyset, \{\emptyset\}\})$ is equivalent to $\{\emptyset\} \subseteq \{\emptyset, \{\emptyset\}\}$. This occurs if and only if $\emptyset \in \{\emptyset, \{\emptyset\}\}$, which is true.
- (d) False. Consider $A = \{1\}$ and $B = \{2\}$. Then $\{1, 2\} \subseteq A \cup B$, although $\{1, 2\}$ is a subset of neither A nor B. This means $\{1, 2\} \in \mathcal{P}(A \cup B)$, whereas $\{1, 2\} \notin \mathcal{P}(A) \cup \mathcal{P}(B)$.
- (e) False. No matter what A and B are, $\emptyset \in \mathcal{P}(A \times B)$. On the other hand, $\emptyset \notin \mathcal{P}(A) \times \mathcal{P}(B)$ since the product of sets contains only ordered pairs.

2 Set Proofs

- (a) *Proof.* (\Leftarrow) Suppose that $A \subseteq \emptyset$. Since $\emptyset \subseteq A$ no matter what A is, this shows that $A = \emptyset$. (\Rightarrow) Suppose that $A = \emptyset$. This immediately implies that $A \subseteq \emptyset$.
- (b) *Proof.* (\Leftarrow) Suppose that $A \cup B = A$. Given an arbitrary $x \in B$, we see that $x \in A \cup B = A$. Hence $B \subseteq A$. (\Rightarrow) Suppose that $B \subseteq A$. Given $x \in A \cup B$, either $x \in A$ or $x \in B$; however $B \subseteq A$ implies that in either case $x \in A$. Therefore $A \cup B \subseteq A$. On the other hand, $A \subseteq A \cup B$ is generally true. We conclude that $A = A \cup B$.

- (c) *Proof.* Suppose that $A \neq \emptyset$ and $A \times B = \emptyset$. Assume for sake of contradiction that $B \neq \emptyset$. We can find $x \in A$ and $y \in B$, so that $(x, y) \in A \times B$, contradicting the fact that $A \times B$ is empty. Hence $B = \emptyset$. \Box
- (d) Proof. Suppose that P(A) P(B) ⊆ P(A B) and that A∩B is nonempty. Fix x ∈ A∩B and assume we can find y ∈ A such that y ∉ B. Since x and y are both elements of A, we have {x, y} ⊆ A. On the other hand, since y ∉ B we see that {x, y} ∉ B. Therefore {x, y} ∈ P(A) P(B). We deduce that {x, y} ∈ P(A B); that is, {x, y} ⊆ A B. In particular x ∈ A B, which implies that x ∉ B. This contradicts the fact that x ∈ A ∩ B, so our assumption that y exists was false. We conclude that A ⊆ B as desired.
- (e) *Proof.* Assume that $A \cup B \subseteq C \cup D$, $A \cap B = \emptyset$, and $C \subseteq A$. Let $x \in B$ and note that $x \notin A$, lest $A \cap B$ be nonempty. It follows that $x \notin C$. We know that x is an element of $A \cup B$, hence of $C \cup D$ as well. Since $x \notin C$, we conclude that x must be an element of D. That is, $B \subseteq D$.
- (f) Proof. Let $x \in A\Delta\emptyset$. Then either $x \in A \emptyset$ or $x \in \emptyset A$. If x were an element of $\emptyset A$, then x would be an element of the empty set. This cannot be, so $x \in A - \emptyset$. In particular, $x \in A$ and we deduce that $A\Delta\emptyset \subseteq A$. Now consider an arbitrary $y \in A$. Since $y \notin \emptyset$, we have $y \in A - \emptyset$. We conclude that $y \in A\Delta\emptyset$, hence $A \subseteq A\Delta\emptyset$. It follows that $A = A\Delta\emptyset$.
- (g) Proof. (⇐) Suppose that AΔB = Ø. Assume we can find an x in A but not in B. Then x ∈ A B, hence x ∈ AΔB. This contradicts the fact that AΔB is empty, so no such x exists. That is, A ⊆ B. The same argument shows that B ⊆ A as well, so A = B.
 (⇒) Suppose that A = B. Then any element of A is an element of B and vice versa, so both A B and B A are empty. That is, AΔB = Ø.
- (h) The statement is true. Let $x \in (A\Delta B)\Delta C$. Then either $x \in (A\Delta B) C$ or $x \in C (A\Delta B)$. First suppose that $x \in (A\Delta B) C$; then $x \in A\Delta B$ and $x \notin C$. Moreover, either $x \in A B$ or $x \in B A$. If $x \in A B$ then $x \in A$ and $x \notin B$. Since $x \notin C$ as well, we have $x \notin B\Delta C$ and finally $x \in A\Delta(B\Delta C)$. If instead $x \in B A$ then from $x \notin C$ we have $x \in B C$. Thus $x \in B\Delta C$; since $x \notin A$, we see $x \in A\Delta(B\Delta C)$.

Now, returning to the beginning, suppose that $x \in C - (A\Delta B)$ instead. Then $x \in C$ and $x \notin A\Delta B$. If $x \in A$ then $x \in B$ as well, lest $x \in A\Delta B$. Since x is an element of both B and C, we have $x \notin B\Delta C$. Hence $x \in A\Delta(B\Delta C)$. On the other hand if $x \notin A$, then $x \notin B$ as well—otherwise $x \in A\Delta B$ would follow. Since x

is an element of C but not B, we have $x \in B\Delta C$. Together with the fact that $x \notin A$, we find $x \in A\Delta(B\Delta C)$. Finally we conclude that $(A\Delta B)\Delta C \subseteq A\Delta(B\Delta C)$.

The same argument proves the opposite inclusion, so $(A\Delta B)\Delta C = A\Delta (B\Delta C)$, as desired. Whew.

3 Indexed Collections

(a) The statement is not generally true. Suppose that B is any nonempty set and that some $A_i = B$ while another $A_j = \emptyset$. Then the intersection of the sets (A_i) is empty and we have

$$B - \left(\bigcap_{i \in I} A_i\right) = B - \emptyset = B.$$

On the other hand one of the sets $B - A_i$ is empty as well, so

$$\bigcap_{i\in I} (B-A_i) = \emptyset.$$

As we can see, the two sets are different.

- (b) Proof. For simplicity we denote $A_0 = \{x \in \mathbb{R} : f(x) > 0\}$ and $A_n = \{x \in \mathbb{R} : f(x) \ge 1/n\}$ for each $n \in \mathbb{N}$. Given $x \in A_0$ we can find $m \in \mathbb{N}$ so that $1/m \le f(x)$ (we'll accept this as intuitively clear, but one could prove this fact carefully). Thus $x \in A_m$ and moreover $x \in \bigcup_n A_n$. Conversely if x is an element of the aforementioned union, then for some m we have $x \in A_m$. This implies that $f(x) \ge 1/m$. In particular f(x) > 0, so $x \in A_0$.
- (c) *Proof.* Let $x \in I$. Then for some $n \in \mathbb{N}$ we have

$$x \in \bigcap_{m=n}^{\infty} A_m$$

That is, x is an element of A_m for each $m \ge n$ (we could say "x is in all but finitely many of the sets"). To show that $x \in S$, we need to show that

$$x \in \bigcup_{m=N}^{\infty} A_m. \tag{(\star)}$$

for an arbitrary $N \in \mathbb{N}$. Indeed, taking *m* to be the larger of *N* and *n* we see that *x* is an element of A_m as well as the union in equation (\star) above. As *x* was arbitrary, $x \in S$ implies $I \subseteq S$.

(d) Consider the sequence of sets $A_1 = \{1\}, A_2 = \emptyset, A_3 = \{1\}, A_4 = \emptyset, A_5 = \{1\}, \ldots$ and note that \emptyset repeatedly appears, even arbitrarily far down the sequence. That is,

$$\bigcap_{m=n}^{\infty} A_m = \emptyset$$

for any n. Hence the set I is empty (since it is a union of empty sets). On the other hand,

$$\bigcup_{m=n}^{\infty} A_m = \{1\}$$

for all n. Therefore $S = \{1\}$ and $I \neq S$.