
Math 8 Homework 3 Solutions

1 Examples of Functions

(a) (i) N→ N
(ii) R→ R

(iii) P(R)→ [0,∞]

(iv) R3 → R2

(v) R3 × R3 → R3

(vi) C(R)→ R
(vii) N→ R

(b) (i) Proof. Fix an arbitrary set A. Note that ∅ ∩A = ∅; thus we can write

φ(A) = φ(∅ ∪A) = φ(∅) + φ(A).

Subtracting φ(A) from this equation leaves us with φ(∅) = 0.

(ii) Proof. Let A,B be arbitrary. Note that A ∪B = A ∪ (B −A) and that A ∩ (B −A) = ∅. Thus

φ(A ∪B) = φ(A) + φ(B −A). (?)

Next notice that B = (B −A) ∪ (A ∩B) and (B −A) ∩ (A ∩B) = ∅. Thus

φ(B) = φ(B −A) + φ(A ∩B).

Subtracting this from equation (?) give the result.

2 Injectivity and Surjectivity

(a) (i) Let f : {1} → {1} be the identity function and g : {1} → R be arbitrary.

(ii) Let f : {1} → R be arbitrary and g : R→ R be the identity function.

(iii) Let f : {1} → R be arbitrary and g : R→ {1} map every real number to 1.

(iv) Let f : R→ {1} map every real number to 1 and g : {1} → {1} be the identity function.

(v) Let f : R→ R be the identity function and g : R→ {1} map every real number to 1.

(vi) Let f : {1} → R be the inclusion map and g : R→ {1} map every real number to 1.

(b) Proof. Let y ∈ C be arbitrary. By the surjectivity of g ◦ f we can find x ∈ A so that (g ◦ f)(x) = y. But this
implies that g maps f(x) to y. So g is surjective.

(c) Proof. Assume that x, y ∈ A are such that f(x) = f(y). Then g(f(x)) = g(f(y)), but the injectivity of g ◦ f
implies that x = y. So f is injective.

(d) Proof. Suppose there are real numbers x 6= y so that f(x) = f(y). By the mean value theorem we can find
a number c between x and y so that

0 =
f(x)− f(y)

x− y
= f ′(c),

contradicting the assumption that f ′ is never zero. We conclude that f is injective.

(e) Proof. Assume that f is surjective. Then there are x, y ∈ (0, 1) so that f(x) = 0 and f(y) = 2. By the mean
value theorem there is a c between x and y so that f(x)− f(y) = f ′(c)(x− y). But |x− y| ≤ 1, so we have

2 = |f(x)− f(y)| = |f ′(c)| · |x− y| ≤ 1 · 1 = 1,

a contradiction. So f is not surjective.



3 Images of Sets

(a) Let f : A→ B be an arbitrary function and C,D ⊆ A.

(i) Proof. Let y ∈ f(C ∪ D) and find x ∈ C ∪ D so that f(x) = y. If x ∈ C then y ∈ f(C); otherwise
x ∈ D and y ∈ f(D). Either way y ∈ f(C) ∪ f(D) so we have that f(C ∪D) ⊆ f(C) ∪ f(D).

Now let z ∈ f(C) ∪ f(D). If z ∈ f(C) we can find a ∈ C so that f(a) = z; in this case a ∈ C ∪D and
z ∈ f(C ∪D). Otherwise z ∈ f(D), so we can find b ∈ D such that f(b) = z. In this case b ∈ C ∪D
and z ∈ f(C ∪D). This covers all cases, so f(C) ∪ f(D) ⊆ f(C ∪D). We conclude that the sets are
equal.

(ii) Proof. Let y ∈ f(C ∩D) and find x ∈ C ∩D so that f(x) = y. Since x ∈ C we have y ∈ f(C); similarly
y ∈ f(D). Hence y ∈ f(C) ∩ f(D) and we deduce f(C ∩D) ⊆ f(C) ∩ f(D).

(iii) Let f : {1, 2} → {3} map both 1 and 2 to 3. If we set C = {1} and D = {2} then

f(C ∩D) = f(∅) = ∅ 6= {3} = f(C) ∩ f(D).

(b) Let f : A→ B be an arbitrary function and E,F ⊆ B.

(i) Proof. Let x ∈ f−1(E ∪ F ). Then either f(x) ∈ E or f(x) ∈ F ; in the first case x ∈ f−1(E), while in
the second case x ∈ f−1(F ). Either way x ∈ f−1(E)∪f−1(F ), whence f−1(E∪F ) ⊆ f−1(E)∪f−1(F ).

Now let y ∈ f−1(E) ∪ f−1(F ). Then either f(y) ∈ E or f(y) ∈ F . Either way, f(y) ∈ E ∪ F , so we
deduce y ∈ f−1(E ∪ F ) and f−1(E ∪ F ) = f−1(E) ∪ f−1(F ).

(ii) Proof. Let x ∈ f−1(E ∩ F ), so that f(x) ∈ E ∩ F . Then f(x) ∈ E and f(x) ∈ F ; that is, x ∈ f−1(E)
and x ∈ f−1(F ). From this we deduce f−1(E ∩ F ) ⊆ f−1(E) ∩ f−1(F ).

Now assume y ∈ f−1(E) ∩ f−1(F ). Since y ∈ f−1(E) we have f(y) ∈ E. Since y ∈ f−1(F ) we have
f(y) ∈ F . Hence we have f(y) ∈ E ∩ F and y ∈ f−1(E ∩ F ). We conclude that f−1(E ∩ F ) =
f−1(E) ∩ f−1(F ).


