Math 8 Homework 3 Solutions

1 Examples of Functions

(a) (i) $\mathbb{N} \rightarrow \mathbb{N}$
(ii) $\mathbb{R} \rightarrow \mathbb{R}$
(iii) $\mathcal{P}(\mathbb{R}) \rightarrow[0, \infty]$
(iv) $\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$
(v) $\mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
(vi) $C(\mathbb{R}) \rightarrow \mathbb{R}$
(vii) $\mathbb{N} \rightarrow \mathbb{R}$
(b) (i) Proof. Fix an arbitrary set A. Note that $\varnothing \cap A=\varnothing$; thus we can write

$$
\phi(A)=\phi(\varnothing \cup A)=\phi(\varnothing)+\phi(A)
$$

Subtracting $\phi(A)$ from this equation leaves us with $\phi(\varnothing)=0$.
(ii) Proof. Let A, B be arbitrary. Note that $A \cup B=A \cup(B-A)$ and that $A \cap(B-A)=\varnothing$. Thus

$$
\phi(A \cup B)=\phi(A)+\phi(B-A)
$$

Next notice that $B=(B-A) \cup(A \cap B)$ and $(B-A) \cap(A \cap B)=\varnothing$. Thus

$$
\phi(B)=\phi(B-A)+\phi(A \cap B)
$$

Subtracting this from equation (\star) give the result.

2 Injectivity and Surjectivity

(a) (i) Let $f:\{1\} \rightarrow\{1\}$ be the identity function and $g:\{1\} \rightarrow \mathbb{R}$ be arbitrary.
(ii) Let $f:\{1\} \rightarrow \mathbb{R}$ be arbitrary and $g: \mathbb{R} \rightarrow \mathbb{R}$ be the identity function.
(iii) Let $f:\{1\} \rightarrow \mathbb{R}$ be arbitrary and $g: \mathbb{R} \rightarrow\{1\}$ map every real number to 1 .
(iv) Let $f: \mathbb{R} \rightarrow\{1\}$ map every real number to 1 and $g:\{1\} \rightarrow\{1\}$ be the identity function.
(v) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the identity function and $g: \mathbb{R} \rightarrow\{1\}$ map every real number to 1 .
(vi) Let $f:\{1\} \rightarrow \mathbb{R}$ be the inclusion map and $g: \mathbb{R} \rightarrow\{1\}$ map every real number to 1 .
(b) Proof. Let $y \in C$ be arbitrary. By the surjectivity of $g \circ f$ we can find $x \in A$ so that $(g \circ f)(x)=y$. But this implies that g maps $f(x)$ to y. So g is surjective.
(c) Proof. Assume that $x, y \in A$ are such that $f(x)=f(y)$. Then $g(f(x))=g(f(y))$, but the injectivity of $g \circ f$ implies that $x=y$. So f is injective.
(d) Proof. Suppose there are real numbers $x \neq y$ so that $f(x)=f(y)$. By the mean value theorem we can find a number c between x and y so that

$$
0=\frac{f(x)-f(y)}{x-y}=f^{\prime}(c)
$$

contradicting the assumption that f^{\prime} is never zero. We conclude that f is injective.
(e) Proof. Assume that f is surjective. Then there are $x, y \in(0,1)$ so that $f(x)=0$ and $f(y)=2$. By the mean value theorem there is a c between x and y so that $f(x)-f(y)=f^{\prime}(c)(x-y)$. But $|x-y| \leq 1$, so we have

$$
2=|f(x)-f(y)|=\left|f^{\prime}(c)\right| \cdot|x-y| \leq 1 \cdot 1=1
$$

a contradiction. So f is not surjective.

3 Images of Sets

(a) Let $f: A \rightarrow B$ be an arbitrary function and $C, D \subseteq A$.
(i) Proof. Let $y \in f(C \cup D)$ and find $x \in C \cup D$ so that $f(x)=y$. If $x \in C$ then $y \in f(C)$; otherwise $x \in D$ and $y \in f(D)$. Either way $y \in f(C) \cup f(D)$ so we have that $f(C \cup D) \subseteq f(C) \cup f(D)$.
Now let $z \in f(C) \cup f(D)$. If $z \in f(C)$ we can find $a \in C$ so that $f(a)=z$; in this case $a \in C \cup D$ and $z \in f(C \cup D)$. Otherwise $z \in f(D)$, so we can find $b \in D$ such that $f(b)=z$. In this case $b \in C \cup D$ and $z \in f(C \cup D)$. This covers all cases, so $f(C) \cup f(D) \subseteq f(C \cup D)$. We conclude that the sets are equal.
(ii) Proof. Let $y \in f(C \cap D)$ and find $x \in C \cap D$ so that $f(x)=y$. Since $x \in C$ we have $y \in f(C)$; similarly $y \in f(D)$. Hence $y \in f(C) \cap f(D)$ and we deduce $f(C \cap D) \subseteq f(C) \cap f(D)$.
(iii) Let $f:\{1,2\} \rightarrow\{3\}$ map both 1 and 2 to 3 . If we set $C=\{1\}$ and $D=\{2\}$ then

$$
f(C \cap D)=f(\varnothing)=\varnothing \neq\{3\}=f(C) \cap f(D)
$$

(b) Let $f: A \rightarrow B$ be an arbitrary function and $E, F \subseteq B$.
(i) Proof. Let $x \in f^{-1}(E \cup F)$. Then either $f(x) \in E$ or $f(x) \in F$; in the first case $x \in f^{-1}(E)$, while in the second case $x \in f^{-1}(F)$. Either way $x \in f^{-1}(E) \cup f^{-1}(F)$, whence $f^{-1}(E \cup F) \subseteq f^{-1}(E) \cup f^{-1}(F)$. Now let $y \in f^{-1}(E) \cup f^{-1}(F)$. Then either $f(y) \in E$ or $f(y) \in F$. Either way, $f(y) \in E \cup F$, so we deduce $y \in f^{-1}(E \cup F)$ and $f^{-1}(E \cup F)=f^{-1}(E) \cup f^{-1}(F)$.
(ii) Proof. Let $x \in f^{-1}(E \cap F)$, so that $f(x) \in E \cap F$. Then $f(x) \in E$ and $f(x) \in F$; that is, $x \in f^{-1}(E)$ and $x \in f^{-1}(F)$. From this we deduce $f^{-1}(E \cap F) \subseteq f^{-1}(E) \cap f^{-1}(F)$.
Now assume $y \in f^{-1}(E) \cap f^{-1}(F)$. Since $y \in f^{-1}(E)$ we have $f(y) \in E$. Since $y \in f^{-1}(F)$ we have $f(y) \in F$. Hence we have $f(y) \in E \cap F$ and $y \in f^{-1}(E \cap F)$. We conclude that $f^{-1}(E \cap F)=$ $f^{-1}(E) \cap f^{-1}(F)$.

