1 Examples of Functions

(a) (i) $\mathbb{N} \to \mathbb{N}$

- (ii) $\mathbb{R} \to \mathbb{R}$
- (iii) $\mathcal{P}(\mathbb{R}) \to [0,\infty]$
- (iv) $\mathbb{R}^3 \to \mathbb{R}^2$
- (v) $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$
- (vi) $C(\mathbb{R}) \to \mathbb{R}$
- (vii) $\mathbb{N} \to \mathbb{R}$
- (b) (i) *Proof.* Fix an arbitrary set A. Note that $\emptyset \cap A = \emptyset$; thus we can write

$$\phi(A) = \phi(\emptyset \cup A) = \phi(\emptyset) + \phi(A).$$

Subtracting $\phi(A)$ from this equation leaves us with $\phi(\emptyset) = 0$.

(ii) *Proof.* Let A, B be arbitrary. Note that $A \cup B = A \cup (B - A)$ and that $A \cap (B - A) = \emptyset$. Thus

$$\phi(A \cup B) = \phi(A) + \phi(B - A). \tag{(\star)}$$

Next notice that $B = (B - A) \cup (A \cap B)$ and $(B - A) \cap (A \cap B) = \emptyset$. Thus

$$\phi(B) = \phi(B - A) + \phi(A \cap B).$$

Subtracting this from equation (\star) give the result.

2 Injectivity and Surjectivity

(a) (i) Let $f: \{1\} \to \{1\}$ be the identity function and $g: \{1\} \to \mathbb{R}$ be arbitrary.

- (ii) Let $f: \{1\} \to \mathbb{R}$ be arbitrary and $g: \mathbb{R} \to \mathbb{R}$ be the identity function.
- (iii) Let $f: \{1\} \to \mathbb{R}$ be arbitrary and $g: \mathbb{R} \to \{1\}$ map every real number to 1.
- (iv) Let $f : \mathbb{R} \to \{1\}$ map every real number to 1 and $g : \{1\} \to \{1\}$ be the identity function.
- (v) Let $f : \mathbb{R} \to \mathbb{R}$ be the identity function and $q : \mathbb{R} \to \{1\}$ map every real number to 1.
- (vi) Let $f: \{1\} \to \mathbb{R}$ be the inclusion map and $g: \mathbb{R} \to \{1\}$ map every real number to 1.
- (b) *Proof.* Let $y \in C$ be arbitrary. By the surjectivity of $g \circ f$ we can find $x \in A$ so that $(g \circ f)(x) = y$. But this implies that g maps f(x) to y. So g is surjective.
- (c) Proof. Assume that $x, y \in A$ are such that f(x) = f(y). Then g(f(x)) = g(f(y)), but the injectivity of $g \circ f$ implies that x = y. So f is injective.
- (d) *Proof.* Suppose there are real numbers $x \neq y$ so that f(x) = f(y). By the mean value theorem we can find a number c between x and y so that

$$0 = \frac{f(x) - f(y)}{x - y} = f'(c),$$

contradicting the assumption that f' is never zero. We conclude that f is injective.

(e) *Proof.* Assume that f is surjective. Then there are $x, y \in (0, 1)$ so that f(x) = 0 and f(y) = 2. By the mean value theorem there is a c between x and y so that f(x) - f(y) = f'(c)(x - y). But $|x - y| \le 1$, so we have

$$2 = |f(x) - f(y)| = |f'(c)| \cdot |x - y| \le 1 \cdot 1 = 1,$$

a contradiction. So f is not surjective.

3 Images of Sets

- (a) Let $f: A \to B$ be an arbitrary function and $C, D \subseteq A$.
 - (i) Proof. Let $y \in f(C \cup D)$ and find $x \in C \cup D$ so that f(x) = y. If $x \in C$ then $y \in f(C)$; otherwise $x \in D$ and $y \in f(D)$. Either way $y \in f(C) \cup f(D)$ so we have that $f(C \cup D) \subseteq f(C) \cup f(D)$. Now let $z \in f(C) \cup f(D)$. If $z \in f(C)$ we can find $a \in C$ so that f(a) = z; in this case $a \in C \cup D$ and $z \in f(C \cup D)$. Otherwise $z \in f(D)$, so we can find $b \in D$ such that f(b) = z. In this case $b \in C \cup D$ and $z \in f(C \cup D)$. This covers all cases, so $f(C) \cup f(D) \subseteq f(C \cup D)$. We conclude that the sets are equal.
 - (ii) Proof. Let $y \in f(C \cap D)$ and find $x \in C \cap D$ so that f(x) = y. Since $x \in C$ we have $y \in f(C)$; similarly $y \in f(D)$. Hence $y \in f(C) \cap f(D)$ and we deduce $f(C \cap D) \subseteq f(C) \cap f(D)$.
 - (iii) Let $f: \{1,2\} \rightarrow \{3\}$ map both 1 and 2 to 3. If we set $C = \{1\}$ and $D = \{2\}$ then

$$f(C \cap D) = f(\emptyset) = \emptyset \neq \{3\} = f(C) \cap f(D).$$

- (b) Let $f: A \to B$ be an arbitrary function and $E, F \subseteq B$.
 - (i) Proof. Let $x \in f^{-1}(E \cup F)$. Then either $f(x) \in E$ or $f(x) \in F$; in the first case $x \in f^{-1}(E)$, while in the second case $x \in f^{-1}(F)$. Either way $x \in f^{-1}(E) \cup f^{-1}(F)$, whence $f^{-1}(E \cup F) \subseteq f^{-1}(E) \cup f^{-1}(F)$. Now let $y \in f^{-1}(E) \cup f^{-1}(F)$. Then either $f(y) \in E$ or $f(y) \in F$. Either way, $f(y) \in E \cup F$, so we deduce $y \in f^{-1}(E \cup F)$ and $f^{-1}(E \cup F) = f^{-1}(E) \cup f^{-1}(F)$.
 - (ii) Proof. Let $x \in f^{-1}(E \cap F)$, so that $f(x) \in E \cap F$. Then $f(x) \in E$ and $f(x) \in F$; that is, $x \in f^{-1}(E)$ and $x \in f^{-1}(F)$. From this we deduce $f^{-1}(E \cap F) \subseteq f^{-1}(E) \cap f^{-1}(F)$. Now assume $y \in f^{-1}(E) \cap f^{-1}(F)$. Since $y \in f^{-1}(E)$ we have $f(y) \in E$. Since $y \in f^{-1}(F)$ we have $f(y) \in F$. Hence we have $f(y) \in E \cap F$ and $y \in f^{-1}(E \cap F)$. We conclude that $f^{-1}(E \cap F) = f^{-1}(E) \cap f^{-1}(F)$.