1. Give an example of $A, B \subset \mathbb{R}$ with $A \neq B$ and $d(A, B) = 0$.
 Any sets $A \subset B$ where $B \setminus A$ has measure zero will suffice. For example, take $A = \mathbb{R} \setminus \mathbb{Q}$ and $B = \mathbb{R}$.

2. Prove that if $f : \mathbb{R} \to \mathbb{R}$ is continuous then f is Lebesgue measurable.
 Let $a \in \mathbb{R}$. Then $\{x : f(x) > a\}$ is the inverse image under f of the open set (a, ∞); by continuity, $\{x : f(x) > a\}$ is open. All open sets are measurable, so $\{x : f(x) > a\}$ is measurable. This proves f is a measurable function.

3. If $\{f_n\}$ is a sequence of measurable functions, prove that the set of x for which $\{f_n(x)\}$ converges is measurable.
 The set whereupon (f_n) converges is $\{x : \lim \inf f_n(x) = \lim \sup f_n(x)\}$.
 Define the measurable functions $g = \lim \inf f_n$ and $h = \lim \sup f_n$. Then $h - g$ is measurable, so
 $\{x : \lim \inf f_n(x) = \lim \sup f_n(x)\} = \{x : 0 = h(x) - g(x)\} \setminus \{x : 0 < h(x) - g(x)\}$
 is measurable by theorem 11.15.
 Alternatively,
 $$E = \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \bigcap_{m=N}^{\infty} \left\{ x : |f_n(x) - f_m(x)| < \frac{1}{k} \right\}$$
 is exactly the set whereupon (f_n) converges.

4. Is the Cantor set C measurable?
 Let $C_0 = [0, 1]$ and C_1 be C_0 with its middle-third interval deleted—that is, $C_1 = C_0 \setminus (1/3, 2/3)$. For $n \geq 2$ define C_n to be C_{n-1} with the middle-third of each interval deleted. By definition, $C = \cap_n C_n$. Notice that each C_n is an elementary set and
 $$d(C, C_n) = m(C \Delta C_n) \leq m(C_n) = \left(\frac{2}{3}\right)^n,$$
 where we use the common notation $A \Delta B$ to denote the symmetric difference of A and B. Therefore $\lim_n d(C, C_n) = 0$, showing that C is measurable.

5. What is $m^*(C)$?
 Since $C \subset C_n$ for each n, we have
 $$m^*(C) \leq m^*(C_n) = \left(\frac{2}{3}\right)^n,$$
 so taking $n \to \infty$ gives $m^*(C) = 0$.
 (Remark: All sets of outer measure zero are measurable; hence this problem answers the previous one)

6. Write a paragraph about Hausdorff measure and Hausdorff dimension.
 In the concrete approach to Lebesgue measure on \mathbb{R}^n one covers a set S with small sets and sums their volumes to approximate the ‘volume’ of S. Inspired by this, we note that the notion of diameter exists in all metric spaces, so perhaps a generalization of measure possible. In computing the volume of a ball in
In \(\mathbb{R}^n \), one raises the radius to the \(n \)-th power; how do we adapt this for a general space? We sidestep the problem; let \(S \) be a subset of a metric space \((X, d)\) and define for each \(r > 0 \)

\[
H^r(S) = \sup_{\delta > 0} \left\{ \sum_{i=1}^{\infty} \text{diam}(U_i)^r \right\},
\]

where the infimum is over all countable covers of \(S \) by set \(U_i \) with diameter less than \(\delta \) (recall that \(\text{diam}(U) = \sup\{d(x, y) : x, y \in U\} \)). It can be shown that for each \(r \) this is an outer measure; better yet, in \(\mathbb{R}^n \) Lebesgue measure agrees with \(H^n \) up to a constant.

In \(\mathbb{R}^2 \) the measure of a line is zero. In some sense this is because the line has ‘dimension’ smaller than that of \(\mathbb{R}^2 \), so the measure associated with \(\mathbb{R}^2 \) returns zero. The same phenomenon occurs for our general measure: given a set \(S \) in a metric space, taking \(r \) too large yields \(H^r(S) = 0 \). This suggests a definition of dimension far more general than that of linear algebra. Define the dimension of \(S \) to be

\[
\dim(S) = \inf\{r \geq 0 : H^r(S) = 0\}.
\]

Amazingly, this definition matches our expectations for simple sets. For instance, \(\dim(\mathbb{R}^n) = n \) and \(\dim(S^1) = 1 \). Stranger still, some set have dimension which is not a whole number! The Cantor set has dimension \(\ln 2 / \ln 3 \), while Brownian motion traces a path with dimension between 1 and 2.