
Math 8 Homework 5 Solutions

1 Mathematical Induction and the Well Ordering Principle

(a) Proof. When n = 1 we have
1 + 3 + 5 + · · ·+ (2n− 1) = 1 = n2.

Now assume the claim holds for some positive integer n. Then we have that

1 + 3 + 5 + · · ·+ (2n− 1) + (2n+ 1) = n2 + (2n+ 1) = (n+ 1)2

so the result holds by induction.

(b) Proof. When n = 1 we have

1 · 1! + 2 · 2! + 3 · 3! + · · ·+ n · n! = 1 = 2− 1 = (n+ 1)!− 1.

Now assume the result for some positive integer n. Then it follows that

1 · 1! + 2 · 2! + · · ·+ n · n! + (n+ 1) · (n+ 1)! = (n+ 1)!− 1 + (n+ 1) · (n+ 1)!

= (n+ 2) · (n+ 1)!− 1

= (n+ 2)!− 1,

so the result holds for all n by induction.

(c) Proof. When n = 1 we have 4n − 1 = 3, a multiple of 3. Now assume that 3 divides 4n − 1 for some positive
integer n. Find an integer k so that 4n − 1 = 3k and note that

4n+1 − 1 = 4 · 4n − 1 = 3 · (4n + k).

We see that 3 divides 4n+1 − 1. By induction the result holds for all integers n.

(d) Proof. When n = 1 we have that
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Now assume the result holds for some positive integer n. Then it follows that
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so the result holds for all n by induction.

(e) Proof. We proceed by induction on n. When n = 1 we have x + 1/x ∈ Q by assumption. We also need to
handle n = 2 separately; in this case notice that
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Now assume that n ≥ 2 is an integer so that the result holds for both n and n − 1 (that is, we’re assuming
the result for the previous two values of n—this is why we had two base cases). We can deduce the result
for n+ 1 by noting that
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completeing the induction.



(f) Proof. This is tricky, but it’s a well–known and important problem. First notice that f(0) = f(0 + 0) =
f(0) + f(0), forcing f(0) = 0. From this we deduce that for any x ∈ Q it follows that

0 = f(0) = f(x− x) = f(x) + f(−x),

so f(−x) = −f(x). In other words, once we prove f(x) = cx for x > 0 it follows for x < 0; from now on we’ll
only consider x > 0.

Let f(1) = c. We’ll prove f(n) = cn for all n ∈ N by a brief induction. The base case is immediate, and if
we assume f(n) = cn for some n ∈ N then we have f(n+ 1) = f(n) + f(1) = cn+ c = c(n+ 1), proving the
first claim.

Next we’ll prove f(x) = cx for any x of the form 1/n, where n is a positive integer. Given any such n we
have
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so that f(1/n) = c · (1/n), as claimed.

Finally we show f(x) = cx for general rational numbers x. Let m,n > 0 be integers. Then we have
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as desired.

(g) Proof. The image of f is a set of positive integers. By the well–ordering principle there is a smallest element.
Let n ∈ Z be such that f(n) is minimal. If f(n+ 1) 6= f(n) then f(n+ 1) > f(n) since f(n) is the smallest
possible value of f . But then

f(n− 1) = 2f(n)− f(n+ 1) < f(n),

contradicting the fact that f(n) is minimal. Thus f(n + 1) = f(n) and similarly f(n − 1) = f(n). An
inductive argument (whose details we need not provide) shows that f(n + k) = f(n − k) = f(n) for any k
and hence f is constant.

2 The Pigeonhole Principle

(a) Proof. There are 100 possibilities for how many hands a person can shake. If no two people shook the same
number of hands, then each person shook a different number of hands. However, this means someone shook
99 hands (everyone else’s hand) and someone shook no hands (not even the 99 guy), which is a contradiction.
So some two people did shake the same number of hands.

(b) Proof. Subdivide the triangle into 4 equilateral triangles as shown:

If there are 5 points chosen in this figure, some two are in the same smaller triangle. These two points are
at most 1/2 apart.



(c) Proof. Rewrite the 7 numbers as tan θi, where θ1, . . . , θ7 ∈ (−π/2, π/2). This interval has length π, so among
7 numbers there must be some two at most π/6 apart. That is, we can find distinct i, j ∈ {1, . . . , 7} so that

0 ≤ θi − θj ≤
π

6
.

The tangent function is increasing (that is, it preserves inequalities). Since tan 0 = 0 and tanπ/6 = 1/
√

3,
we have

0 ≤ tan(θi − θj) ≤
1√
3
.

Using the identity for tangent of a difference of angles gives

tan(θi − θj) =
tan θi − tan θj

1 + tan θi tan θj
=

xi − xj
1 + xixj

,

which gives the result.

(d) Proof. Ramsey sees 5 other people in the room, so some three of them must be of the same relationship to
him. Without loss of generality, say Ramsey has at least 3 friends in the room. If any two of those friends are
friends with each other, together with Ramsey they are a trio of friends. Otherwise, every pair of Ramsey’s
friends are strangers to each other, giving us a trio of strangers.

(e) Proof. Ramsey sees 16 other people in the room, so there must be 6 of the same relationship to him.
Without loss of generality, say Ramsey has at least 6 archenemies in the room. If any pair of the 6 people
are archenemies with each other, then together with Ramsey we have a trio of enemies. Otherwise we have
6 people, any two of which are friends or strangers. By the previous problem we know there must be a trio
of friends or a trio of strangers in any such group, so we are done.

Remark: This ‘reduce to a known problem and stop’ type of argument is a well–known quirk of mathematical
reasoning. Too many silly jokes told by physicists are based on this.

(f) Proof. We’ve already shown that among 6 people some 3 must be mutual friends or strangers. That is,
R2 ≤ 6. We’re not done because we haven’t checked whether or not 5 people would suffice to guarantee the
same result. In other words, we need only provide an example wherein no trios of mutual friends or strangers
exist among 5 people.

Consider the following picture:

If each vertex represents a person, each red edge represents friendship, and each blue edge represents
strangeness, then a trio of mutual friends or strangers would be a monochromatic triangle. None exists
in this picture, so we’ve shown that 5 people is not enough to guarantee a trio of mutual friends or strangers.
That is, R2 > 5 and we are done.

(g) Proof. We’ll use an argument which should be becoming familiar by now. For simplicity we’ll refer to a trio
of people with the same relationship type simply as a trio. Suppose (n+ 1)(Rn− 1) + 2 people are in a room
together, any two of which has a relationship from one of n+ 1 types. If one of them is named Ramsey, then
Ramsey sees (n+ 1)(Rn − 1) + 1 other people. We claim that at least Rn people of one type of relationship



to Ramsey are in the room with him. This follows from the pigeonhole principle, but for clarity we’ll give
details. If there weren’t Rn people of the same relationship to Ramsey, then there could be at most

(Rn − 1) + (Rn − 1) + · · ·+ (Rn − 1)︸ ︷︷ ︸
n+1

= (n+ 1)(Rn − 1)

other people in the room, which is a contradiction. This proves the claim.

Without loss of generality, say those Rn people are friends to Ramsey. If any two of them are friends with
each other, together with Ramsey we have a trio. Otherwise, we have Rn people, any two of which have one
of n relationships to each other (since we’ve ruled out 1 type of relationship). By definition of Rn there must
be a trio in this group of people. Therefore (n + 1)(Rn − 1) + 2 people is enough to guarantee a trio when
there are n+ 1 types of relationships. This proves the result.

(h) Before we begin, we need a lemma.

Lemma. For any integer n,
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by one of the problems at the beginning of the homework. Since
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the result follows.

Proof. We’ll proceed by induction on n. When n = 2 we have

R2 = 6 ≤ b2ec+ 1.

Now assume the result holds for some integer n ≥ 2. Then we have that

Rn+1 ≤ (n+ 1)(Rn − 1) + 2 ≤ (n+ 1)bn!ec+ 2.

Using the lemma we can write
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so the result holds for all n by induction.


