Math 8 Homework 5 Solutions

1 Mathematical Induction and the Well Ordering Principle

(a) Proof. When $n=1$ we have

$$
1+3+5+\cdots+(2 n-1)=1=n^{2}
$$

Now assume the claim holds for some positive integer n. Then we have that

$$
1+3+5+\cdots+(2 n-1)+(2 n+1)=n^{2}+(2 n+1)=(n+1)^{2}
$$

so the result holds by induction.
(b) Proof. When $n=1$ we have

$$
1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\cdots+n \cdot n!=1=2-1=(n+1)!-1
$$

Now assume the result for some positive integer n. Then it follows that

$$
\begin{aligned}
1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!+(n+1) \cdot(n+1)! & =(n+1)!-1+(n+1) \cdot(n+1)! \\
& =(n+2) \cdot(n+1)!-1 \\
& =(n+2)!-1,
\end{aligned}
$$

so the result holds for all n by induction.
(c) Proof. When $n=1$ we have $4^{n}-1=3$, a multiple of 3 . Now assume that 3 divides $4^{n}-1$ for some positive integer n. Find an integer k so that $4^{n}-1=3 k$ and note that

$$
4^{n+1}-1=4 \cdot 4^{n}-1=3 \cdot\left(4^{n}+k\right)
$$

We see that 3 divides $4^{n+1}-1$. By induction the result holds for all integers n.
(d) Proof. When $n=1$ we have that

$$
\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\frac{1}{(n+3)!}+\cdots=e-2<1=\frac{1}{n!} .
$$

Now assume the result holds for some positive integer n. Then it follows that

$$
\begin{aligned}
\frac{1}{(n+2)!}+\frac{1}{(n+3)!}+\cdots & =\frac{1}{(n+2)(n+1)!}+\frac{1}{(n+3)(n+2)!}+\frac{1}{(n+4)(n+3)!}+\cdots \\
& <\frac{1}{(n+1)(n+1)!}+\frac{1}{(n+1)(n+2)!}+\frac{1}{(n+1)(n+3)!}+\cdots \\
& =\frac{1}{n+1}\left(\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\frac{1}{(n+3)!}+\cdots\right) \\
& <\frac{1}{(n+1) n!} \\
& =\frac{1}{(n+1)!}
\end{aligned}
$$

so the result holds for all n by induction.
(e) Proof. We proceed by induction on n. When $n=1$ we have $x+1 / x \in \mathbb{Q}$ by assumption. We also need to handle $n=2$ separately; in this case notice that

$$
x^{2}+\frac{1}{x^{2}}=\left(x+\frac{1}{x}\right)^{2}-2 \in \mathbb{Q}
$$

Now assume that $n \geq 2$ is an integer so that the result holds for both n and $n-1$ (that is, we're assuming the result for the previous two values of n-this is why we had two base cases). We can deduce the result for $n+1$ by noting that

$$
x^{n+1}+\frac{1}{x^{n+1}}=\left(x^{n}+\frac{1}{x^{n}}\right)\left(x+\frac{1}{x}\right)-\left(x^{n-1}+\frac{1}{x^{n-1}}\right) \in \mathbb{Q}
$$

completeing the induction.
(f) Proof. This is tricky, but it's a well-known and important problem. First notice that $f(0)=f(0+0)=$ $f(0)+f(0)$, forcing $f(0)=0$. From this we deduce that for any $x \in \mathbb{Q}$ it follows that

$$
0=f(0)=f(x-x)=f(x)+f(-x)
$$

so $f(-x)=-f(x)$. In other words, once we prove $f(x)=c x$ for $x>0$ it follows for $x<0$; from now on we'll only consider $x>0$.
Let $f(1)=c$. We'll prove $f(n)=c n$ for all $n \in \mathbb{N}$ by a brief induction. The base case is immediate, and if we assume $f(n)=c n$ for some $n \in \mathbb{N}$ then we have $f(n+1)=f(n)+f(1)=c n+c=c(n+1)$, proving the first claim.
Next we'll prove $f(x)=c x$ for any x of the form $1 / n$, where n is a positive integer. Given any such n we have

$$
c=f(1)=f \underbrace{\left(\frac{1}{n}+\cdots+\frac{1}{n}\right)}_{n}=n f\left(\frac{1}{n}\right)
$$

so that $f(1 / n)=c \cdot(1 / n)$, as claimed.
Finally we show $f(x)=c x$ for general rational numbers x. Let $m, n>0$ be integers. Then we have

$$
f\left(\frac{m}{n}\right)=f \underbrace{\left(\frac{1}{n}+\cdots+\frac{1}{n}\right)}_{m}=m f\left(\frac{1}{n}\right)=c \cdot \frac{m}{n}
$$

as desired.
(g) Proof. The image of f is a set of positive integers. By the well-ordering principle there is a smallest element. Let $n \in \mathbb{Z}$ be such that $f(n)$ is minimal. If $f(n+1) \neq f(n)$ then $f(n+1)>f(n)$ since $f(n)$ is the smallest possible value of f. But then

$$
f(n-1)=2 f(n)-f(n+1)<f(n)
$$

contradicting the fact that $f(n)$ is minimal. Thus $f(n+1)=f(n)$ and similarly $f(n-1)=f(n)$. An inductive argument (whose details we need not provide) shows that $f(n+k)=f(n-k)=f(n)$ for any k and hence f is constant.

2 The Pigeonhole Principle

(a) Proof. There are 100 possibilities for how many hands a person can shake. If no two people shook the same number of hands, then each person shook a different number of hands. However, this means someone shook 99 hands (everyone else's hand) and someone shook no hands (not even the 99 guy), which is a contradiction. So some two people did shake the same number of hands.
(b) Proof. Subdivide the triangle into 4 equilateral triangles as shown:

If there are 5 points chosen in this figure, some two are in the same smaller triangle. These two points are at most $1 / 2$ apart.
(c) Proof. Rewrite the 7 numbers as $\tan \theta_{i}$, where $\theta_{1}, \ldots, \theta_{7} \in(-\pi / 2, \pi / 2)$. This interval has length π, so among 7 numbers there must be some two at most $\pi / 6$ apart. That is, we can find distinct $i, j \in\{1, \ldots, 7\}$ so that

$$
0 \leq \theta_{i}-\theta_{j} \leq \frac{\pi}{6}
$$

The tangent function is increasing (that is, it preserves inequalities). Since $\tan 0=0$ and $\tan \pi / 6=1 / \sqrt{3}$, we have

$$
0 \leq \tan \left(\theta_{i}-\theta_{j}\right) \leq \frac{1}{\sqrt{3}}
$$

Using the identity for tangent of a difference of angles gives

$$
\tan \left(\theta_{i}-\theta_{j}\right)=\frac{\tan \theta_{i}-\tan \theta_{j}}{1+\tan \theta_{i} \tan \theta_{j}}=\frac{x_{i}-x_{j}}{1+x_{i} x_{j}}
$$

which gives the result.
(d) Proof. Ramsey sees 5 other people in the room, so some three of them must be of the same relationship to him. Without loss of generality, say Ramsey has at least 3 friends in the room. If any two of those friends are friends with each other, together with Ramsey they are a trio of friends. Otherwise, every pair of Ramsey's friends are strangers to each other, giving us a trio of strangers.
(e) Proof. Ramsey sees 16 other people in the room, so there must be 6 of the same relationship to him. Without loss of generality, say Ramsey has at least 6 archenemies in the room. If any pair of the 6 people are archenemies with each other, then together with Ramsey we have a trio of enemies. Otherwise we have 6 people, any two of which are friends or strangers. By the previous problem we know there must be a trio of friends or a trio of strangers in any such group, so we are done.
Remark: This 'reduce to a known problem and stop' type of argument is a well-known quirk of mathematical reasoning. Too many silly jokes told by physicists are based on this.
(f) Proof. We've already shown that among 6 people some 3 must be mutual friends or strangers. That is, $R_{2} \leq 6$. We're not done because we haven't checked whether or not 5 people would suffice to guarantee the same result. In other words, we need only provide an example wherein no trios of mutual friends or strangers exist among 5 people.
Consider the following picture:

If each vertex represents a person, each red edge represents friendship, and each blue edge represents strangeness, then a trio of mutual friends or strangers would be a monochromatic triangle. None exists in this picture, so we've shown that 5 people is not enough to guarantee a trio of mutual friends or strangers. That is, $R_{2}>5$ and we are done.
(g) Proof. We'll use an argument which should be becoming familiar by now. For simplicity we'll refer to a trio of people with the same relationship type simply as a trio. Suppose $(n+1)\left(R_{n}-1\right)+2$ people are in a room together, any two of which has a relationship from one of $n+1$ types. If one of them is named Ramsey, then Ramsey sees $(n+1)\left(R_{n}-1\right)+1$ other people. We claim that at least R_{n} people of one type of relationship
to Ramsey are in the room with him. This follows from the pigeonhole principle, but for clarity we'll give details. If there weren't R_{n} people of the same relationship to Ramsey, then there could be at most

$$
\underbrace{\left(R_{n}-1\right)+\left(R_{n}-1\right)+\cdots+\left(R_{n}-1\right)}_{n+1}=(n+1)\left(R_{n}-1\right)
$$

other people in the room, which is a contradiction. This proves the claim.
Without loss of generality, say those R_{n} people are friends to Ramsey. If any two of them are friends with each other, together with Ramsey we have a trio. Otherwise, we have R_{n} people, any two of which have one of n relationships to each other (since we've ruled out 1 type of relationship). By definition of R_{n} there must be a trio in this group of people. Therefore $(n+1)\left(R_{n}-1\right)+2$ people is enough to guarantee a trio when there are $n+1$ types of relationships. This proves the result.
(h) Before we begin, we need a lemma.

Lemma. For any integer n,

$$
\lfloor n!e\rfloor=n!\left(\frac{1}{0!}+\frac{1}{1!}+\cdots+\frac{1}{n!}\right)
$$

Proof. First notice that

$$
n!\left(\frac{1}{0!}+\frac{1}{1!}+\cdots+\frac{1}{n!}\right)
$$

is an integer since each term $n!/ k!=n(n-1) \cdots(k+1)$ is an integer. Secondly,

$$
n!\left(\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\cdots+\right)<1
$$

by one of the problems at the beginning of the homework. Since

$$
e=\frac{1}{0!}+\frac{1}{1!}+\cdots
$$

the result follows.
Proof. We'll proceed by induction on n. When $n=2$ we have

$$
R_{2}=6 \leq\lfloor 2 e\rfloor+1
$$

Now assume the result holds for some integer $n \geq 2$. Then we have that

$$
R_{n+1} \leq(n+1)\left(R_{n}-1\right)+2 \leq(n+1)\lfloor n!e\rfloor+2
$$

Using the lemma we can write

$$
\begin{aligned}
R_{n+1} & \leq(n+1) \cdot n!\left(\frac{1}{0!}+\frac{1}{1!}+\cdots+\frac{1}{n!}\right)+2 \\
& =(n+1)!\left(\frac{1}{0!}+\frac{1}{1!}+\cdots+\frac{1}{n!}\right)+\frac{(n+1)!}{(n+1)!}+1 \\
& =\lfloor(n+1)!e\rfloor+1
\end{aligned}
$$

so the result holds for all n by induction.

