
Math 8 Homework 6 Solutions

1 Clever Counting

(a) Each element of {1, 2, . . . , n} must be placed in at least one of the three sets, although not all 3 at once.
Hence each element can be placed in the sets A,B,C in 6 ways: A and B (not C), B and C (not A), C and
A (not B), A only, B only, or C only. There are 6 choices made independently for n objects, so the answer
is 6n.

(b) Proof. We have n2 people in our marching band. We wish to arrange them into an n × n square marching
formation, but we only care which row a person is in (not which column). There are (n2)! ways to arrange
the people, but we divide by n! for each row (since we consider all its permutations the same). There are n
rows, so the number of formations we can make is (n2)!/(n!)n. In particular, (n2)!/(n!)n is an integer.

(c) (i) We could proceed symbolically:∑
A⊆S

|A| =
∑
A⊆S

∑
x∈A

1 =
∑
x∈S

∑
A⊆S
A3x

1 =
∑
x∈S

2n−1 = n2n−1.

Or rather, we could reason cominatorially. This sum counts elements in subsets of S. Each element is
counted in this sum once for every subset it appears in. There are 2n−1 such subsets, so each element
is counted that many times. There are n elements, so the total is n2n−1.

(ii) We’ll only give the combinatorial argument. This sum counts the elements in subsets of S. Each element
appears 4n−1 times (2n−1 choices for A and B, independently made), so the total is n4n−1.

(d) Given positive integers n, k with k ≤ n, the Stirling number of the second kind S(n, k) is defined to be the
number of ways to place n balls into k identical boxes, leaving no box empty.

(i) To place n things into 1 box, there is only one way (just do it). Hence S(n, 1) = 1.

To place n things into 2 boxes, there are 2 choices for each object, giving 2n arrangements. However,
2 possibilities leave one box empty (all objects in a single box), so we have only 2n − 2 arrangements.
Finally we consider the boxes indistinguishable, so division by 2 gives S(n, 2) = 2n−1 − 1.

To place n objects into n boxes, there is only one way (as boxes are indistinguishale, there is no choice
to make). Hence S(n, n) = 1.

To place n objects into n − 1 boxes, there is only the choice of which 2 objects are placed together.
Hence S(n, n− 1) =

(
n
2

)
.

(ii) Proof. Consider placing n objects into k indistinguishable boxes, leaving none empty. There are two
distinct cases: whether or not object n is placed in its own box. First we could place n− 1 objects into
k − 1 boxes, leaving the final object 1 choice for its box. This is done in S(n− 1, k − 1) ways. Second
we could place n− 1 things into k boxes in S(n− 1, k) ways before choosing a destination for the final
object in k ways. The total number of arrangements in this situation is kS(n− 1, k). Finally S(n, k) is
the sum of these two counts, giving the result.

(iii) Proof. When n = 3 we have

S(n, n− 2) = S(3, 1) = 3 =

(
3

0

)
+ 3

(
3

4

)
=

(
n

3

)
+ 3

(
n

4

)
.

Now assume the result for some integer n ≥ 3. Then we have

S(n+ 1, n− 1) = S(n, n− 2) + (n− 1)S(n, n− 1)

=

(
n

3

)
+ 3

(
n

4

)
+ (n− 1)

(
n

2

)
=

(
n+ 1

3

)
+ 3

(
n+ 1

4

)
,

so the result follows from induction on n.



(e) Proof. Let the answer be denoted α. We proceed symbolically:

α = (2n − 1)−1
∑
A⊆S
A6=∅

∑
x∈A

x

|A|

= (2n − 1)−1
∑
x∈S

∑
A3x

x

|A|

= (2n − 1)−1
∑
x∈S

x
∑
A3x

1

|A|
. (?)

To evaluate this inner sum we ask the question: How many k–element subsets of S contain the element x?
Such a subset contains x and k− 1 other elements chosen from n− 1 numbers, so

(
n−1
k−1
)

is the answer to this
query. We decompose the inner sum of equation (?) into a sum over sets of different sizes:

∑
A3x

1

|A|
=

n∑
k=1

∑
A3x
|A|=k

1

k
=

n∑
k=1

1

k

(
n− 1

k − 1

)
=

n∑
k=1

1

n

(
n

k

)
=

2n − 1

n
.

The −1 is in the numerator since k = 0 was omitted from the well-known sum
(
n
0

)
+ · · ·+

(
n
n

)
= 2n. Inserting

this into equation (?) gives

α = (2n − 1)−1
∑
x∈S

x

(
2n − 1

n

)
=

1

n

∑
x∈S

x,

which is simply the arithmetic mean of the elements of S.

(f) Proof. For each m ∈ S we count how many k–element subsets contain m as the smallest element. Any such
subset must contain m and k− 1 other elements chosen from {m+ 1,m+ 2, . . . , n}. This set contains n−m
elements, so there are

(
n−m
k−1

)
subsets with m as the smallest element. Note that only m = 1, 2, . . . , n− k+ 1

need to be considered. Let α be the desired average and sm(A) denote the smallest element of A; then we
have

α =

(
n

k

)−1 ∑
A⊆S
|A|=k

sm(A) =

(
n

k

)−1 n−k+1∑
m=1

m

(
n−m
k − 1

)

Evaluating this last sum can be tricky. We’ll use a well–known result called the Hockey Stick Identity:

Lemma. Let m,n be positive integers. Then(
n

n

)
+

(
n+ 1

n

)
+

(
n+ 2

n

)
+ · · ·+

(
n+m

n

)
=

(
n+m+ 1

n+ 1

)
.

Proof of lemma. There are many proofs of this identity, but since we’re assuming no prior knowledge of
combinatorics we’ll use induction on m. When m = 0 the identity is obviously true. Now suppose it holds
for some positive integer m. Then we have(

n

n

)
+

(
n+ 1

n

)
+ · · ·+

(
n+m

n

)
+

(
n+m+ 1

n

)
=

(
n+m+ 1

n+ 1

)
+

(
n+m+ 1

n

)
=

(
n+m+ 2

n+ 1

)
,

where the last equality follows from Pascal’s identity (problem 2b on this homework). By induction the result
holds for all m, proving the lemma.



Now we return to the original problem. Rewriting the sum in a clever way and using the lemma twice yields

α =

(
n

k

)−1 n−k+1∑
m=1

m∑
j=1

(
n−m
k − 1

)

=

(
n

k

)−1 n−k+1∑
j=1

n−k+1∑
m=j

(
n−m
k − 1

)

=

(
n

k

)−1 n−k+1∑
j=1

[(
k − 1

k − 1

)
+

(
k

k − 1

)
+ · · ·+

(
n− j
k − 1

)]

=

(
n

k

)−1 n−k+1∑
j=1

(
n− j + 1

k

)

=

(
n

k

)−1 [(
k

k

)
+

(
k + 1

k

)
+ · · ·+

(
n

k

)]
=

(
n

k

)−1(
n+ 1

k + 1

)
=
n+ 1

k + 1
,

as desired.

2 Binomial Identities

(a) Proof. Billy has n friends and wants to k of them to the amusement park. Choosing which k to bring (in
(
n
k

)
ways) is the same as choosing which n− k to leave behind (in

(
n

n−k
)

ways).

(b) Proof. Billy wants to take k + 1 of his n+ 1 friends to the amusement park. He could make his decision in(
n+1
k+1

)
ways. Alternatively since one of Billy’s friends, Alice, always wear a goofy red hat, Billy could decide

first whether to take Alice before considering the rest of his friends. If he takes Alice, he chooses k more
people from the remaining n in

(
n
k

)
ways. If he doesn’t bring Alice, he needs to choose all k + 1 people from

the remaining n in
(

n
k+1

)
ways. Altogether the number of choices is

(
n
k

)
+
(

n
k+1

)
.

(c) Proof. Billy want to take k of his n friends to the park for his birthday. Furthermore, he wants m of the
partygoers to wear birthday hats. He could choose the attendees in

(
n
k

)
ways before choosing the hat–wearers

in
(
k
m

)
ways, for a total count of

(
n
k

)(
k
m

)
. Another way Billy could invite people is by first choosing which m

of his friends he wants to see wear hats. He has
(
n
m

)
choices for this. These m people go to the park, but

Billy needs k −m more people chosen from the remaining n−m to attend as well. He can make this choice
in
(
n−m
k−m

)
ways, for an altogether count of

(
n
m

)(
n−m
k−m

)
.

(d) Proof. Billy wants to take some number of his n friends to the park. He could simply go to each friend
separately and decide whether to take her (2 choices, repeated n times) giving 2n total choices for groups
to invite. Alternatively Billy could arbitrarily decide to invite k people (for some k = 0, 1, . . . , n) and pick
a group of size k in

(
n
k

)
ways. Summing this over all k gives the number of choices Billy has in inviting

friends.

(e) Proof. Billy is yet again going to the park and taking some number of his n friends. This time however he
wants one attendee to wear a big goofy hat. He could choose the hat wearer first in n ways before picking the
rest of the group in 2n−1 ways. In total there are n2n−1 choices for Billy. Alternatively, Billy could decide to
take k friends for some k = 1, . . . , n in

(
n
k

)
ways before choosing one of those k people to wear the hat. For

each k Billy has k
(
n
k

)
choices; summing over k gives the total number of ways to invite friends, one of whom

wears a hat.

(f) Proof. Billy has reached an awkward time in his life and keeps two separate groups of friends, one with n
people and one with m. He’s decided to mix company and take r people to the park for his birthday. He could
simply lump the friends together and make one of

(
n+m

r

)
choices to bring people to the park. Alternatively,

Billy could arbitrarily decide that k people should attend from his first group of friends, while r−k are chosen



from the second group. Given a value of k, Billy has
(
n
k

)(
m

r−k
)

choices; summing over k gives all possibilities
for inviting r people.

(g) Proof. Billy has n guy friends and n girl friends. He wants to take n of them to the park, but insists that
one of the guys wear a big goofy hat. He could choose the hat wearer in n ways before choosing the rest of
the attendees in

(
2n−1
n−1

)
ways, giving a total count of n

(
2n−1
n−1

)
. Alternatively Billy could decide that k guys

should attend for some k = 1, . . . , n. After choosing the k guys in
(
n
k

)
ways, he chooses a guy to wear the

hat in k ways. To round out his entourage Billy picks k girls to go home (in
(
n
k

)
ways), taking the rest with

him to the park. Given a value of k, Billy has k
(
n
k

)2
choices; summing over k gives all ways of building the

necessary group of friends.


