Math 8 Homework 6 Solutions

1 Clever Counting

(a) Each element of $\{1,2, \ldots, n\}$ must be placed in at least one of the three sets, although not all 3 at once. Hence each element can be placed in the sets A, B, C in 6 ways: A and $B(\operatorname{not} C), B$ and $C($ not $A), C$ and A (not B), A only, B only, or C only. There are 6 choices made independently for n objects, so the answer is 6^{n}.
(b) Proof. We have n^{2} people in our marching band. We wish to arrange them into an $n \times n$ square marching formation, but we only care which row a person is in (not which column). There are $\left(n^{2}\right)$! ways to arrange the people, but we divide by n ! for each row (since we consider all its permutations the same). There are n rows, so the number of formations we can make is $\left(n^{2}\right)!/(n!)^{n}$. In particular, $\left(n^{2}\right)!/(n!)^{n}$ is an integer.
(c) (i) We could proceed symbolically:

$$
\sum_{A \subseteq S}|A|=\sum_{A \subseteq S} \sum_{x \in A} 1=\sum_{x \in S} \sum_{\substack{A \subseteq S \\ A \ni x}} 1=\sum_{x \in S} 2^{n-1}=n 2^{n-1}
$$

Or rather, we could reason cominatorially. This sum counts elements in subsets of S. Each element is counted in this sum once for every subset it appears in. There are 2^{n-1} such subsets, so each element is counted that many times. There are n elements, so the total is $n 2^{n-1}$.
(ii) We'll only give the combinatorial argument. This sum counts the elements in subsets of S. Each element appears 4^{n-1} times (2^{n-1} choices for A and B, independently made), so the total is $n 4^{n-1}$.
(d) Given positive integers n, k with $k \leq n$, the Stirling number of the second kind $S(n, k)$ is defined to be the number of ways to place n balls into k identical boxes, leaving no box empty.
(i) To place n things into 1 box, there is only one way (just do it). Hence $S(n, 1)=1$.

To place n things into 2 boxes, there are 2 choices for each object, giving 2^{n} arrangements. However, 2 possibilities leave one box empty (all objects in a single box), so we have only $2^{n}-2$ arrangements. Finally we consider the boxes indistinguishable, so division by 2 gives $S(n, 2)=2^{n-1}-1$.
To place n objects into n boxes, there is only one way (as boxes are indistinguishale, there is no choice to make). Hence $S(n, n)=1$.
To place n objects into $n-1$ boxes, there is only the choice of which 2 objects are placed together. Hence $S(n, n-1)=\binom{n}{2}$.
(ii) Proof. Consider placing n objects into k indistinguishable boxes, leaving none empty. There are two distinct cases: whether or not object n is placed in its own box. First we could place $n-1$ objects into $k-1$ boxes, leaving the final object 1 choice for its box. This is done in $S(n-1, k-1)$ ways. Second we could place $n-1$ things into k boxes in $S(n-1, k)$ ways before choosing a destination for the final object in k ways. The total number of arrangements in this situation is $k S(n-1, k)$. Finally $S(n, k)$ is the sum of these two counts, giving the result.
(iii) Proof. When $n=3$ we have

$$
S(n, n-2)=S(3,1)=3=\binom{3}{0}+3\binom{3}{4}=\binom{n}{3}+3\binom{n}{4}
$$

Now assume the result for some integer $n \geq 3$. Then we have

$$
\begin{aligned}
S(n+1, n-1) & =S(n, n-2)+(n-1) S(n, n-1) \\
& =\binom{n}{3}+3\binom{n}{4}+(n-1)\binom{n}{2} \\
& =\binom{n+1}{3}+3\binom{n+1}{4}
\end{aligned}
$$

so the result follows from induction on n.
(e) Proof. Let the answer be denoted α. We proceed symbolically:

$$
\begin{align*}
\alpha & =\left(2^{n}-1\right)^{-1} \sum_{\substack{A \subseteq S \\
A \neq \varnothing}} \sum_{x \in A} \frac{x}{|A|} \\
& =\left(2^{n}-1\right)^{-1} \sum_{x \in S} \sum_{A \ni x} \frac{x}{|A|} \\
& =\left(2^{n}-1\right)^{-1} \sum_{x \in S} x \sum_{A \ni x} \frac{1}{|A|} .
\end{align*}
$$

To evaluate this inner sum we ask the question: How many k-element subsets of S contain the element x ? Such a subset contains x and $k-1$ other elements chosen from $n-1$ numbers, so $\binom{n-1}{k-1}$ is the answer to this query. We decompose the inner sum of equation (\star) into a sum over sets of different sizes:

$$
\sum_{A \ni x} \frac{1}{|A|}=\sum_{k=1}^{n} \sum_{\substack{A \ni x \\|A|=k}} \frac{1}{k}=\sum_{k=1}^{n} \frac{1}{k}\binom{n-1}{k-1}=\sum_{k=1}^{n} \frac{1}{n}\binom{n}{k}=\frac{2^{n}-1}{n}
$$

The -1 is in the numerator since $k=0$ was omitted from the well-known sum $\binom{n}{0}+\cdots+\binom{n}{n}=2^{n}$. Inserting this into equation (\star) gives

$$
\alpha=\left(2^{n}-1\right)^{-1} \sum_{x \in S} x\left(\frac{2^{n}-1}{n}\right)=\frac{1}{n} \sum_{x \in S} x
$$

which is simply the arithmetic mean of the elements of S.
(f) Proof. For each $m \in S$ we count how many k-element subsets contain m as the smallest element. Any such subset must contain m and $k-1$ other elements chosen from $\{m+1, m+2, \ldots, n\}$. This set contains $n-m$ elements, so there are $\binom{n-m}{k-1}$ subsets with m as the smallest element. Note that only $m=1,2, \ldots, n-k+1$ need to be considered. Let α be the desired average and $\operatorname{sm}(A)$ denote the smallest element of A; then we have

$$
\alpha=\binom{n}{k}^{-1} \sum_{\substack{A \subseteq S \\|A|=k}} \operatorname{sm}(A)=\binom{n}{k}^{-1} \sum_{m=1}^{n-k+1} m\binom{n-m}{k-1}
$$

Evaluating this last sum can be tricky. We'll use a well-known result called the Hockey Stick Identity:
Lemma. Let m, n be positive integers. Then

$$
\binom{n}{n}+\binom{n+1}{n}+\binom{n+2}{n}+\cdots+\binom{n+m}{n}=\binom{n+m+1}{n+1}
$$

Proof of lemma. There are many proofs of this identity, but since we're assuming no prior knowledge of combinatorics we'll use induction on m. When $m=0$ the identity is obviously true. Now suppose it holds for some positive integer m. Then we have

$$
\binom{n}{n}+\binom{n+1}{n}+\cdots+\binom{n+m}{n}+\binom{n+m+1}{n}=\binom{n+m+1}{n+1}+\binom{n+m+1}{n}=\binom{n+m+2}{n+1}
$$

where the last equality follows from Pascal's identity (problem 2b on this homework). By induction the result holds for all m, proving the lemma.

Now we return to the original problem. Rewriting the sum in a clever way and using the lemma twice yields

$$
\begin{aligned}
\alpha & =\binom{n}{k} \sum_{m=1}^{-1} \sum_{j=1}^{n-k+1}\binom{n-m}{k-1} \\
& =\binom{n}{k} \sum_{j=1}^{-1} \sum_{m=j}^{n-k+1}\binom{n-m}{k-1} \\
& =\binom{n}{k} \sum_{j=1}^{-1}\left[\binom{k-1}{k-1}+\binom{k}{k-1}+\cdots+\binom{n-j}{k-1}\right] \\
& =\binom{n}{k} \sum_{j=1}^{-1}\binom{n-k+1}{k} \\
& =\binom{n}{k}^{-1}\left[\binom{k}{k}+\binom{k+1}{k}+\cdots+\binom{n}{k}\right] \\
& =\binom{n}{k}^{-1}\binom{n+1}{k+1} \\
& =\frac{n+1}{k+1},
\end{aligned}
$$

as desired.

2 Binomial Identities

(a) Proof. Billy has n friends and wants to k of them to the amusement park. Choosing which k to bring (in $\binom{n}{k}$ ways) is the same as choosing which $n-k$ to leave behind (in $\binom{n}{n-k}$ ways).
(b) Proof. Billy wants to take $k+1$ of his $n+1$ friends to the amusement park. He could make his decision in $\binom{n+1}{k+1}$ ways. Alternatively since one of Billy's friends, Alice, always wear a goofy red hat, Billy could decide first whether to take Alice before considering the rest of his friends. If he takes Alice, he chooses k more people from the remaining n in $\binom{n}{k}$ ways. If he doesn't bring Alice, he needs to choose all $k+1$ people from the remaining n in $\binom{n}{k+1}$ ways. Altogether the number of choices is $\binom{n}{k}+\binom{n}{k+1}$.
(c) Proof. Billy want to take k of his n friends to the park for his birthday. Furthermore, he wants m of the partygoers to wear birthday hats. He could choose the attendees in $\binom{n}{k}$ ways before choosing the hat-wearers in $\binom{k}{m}$ ways, for a total count of $\binom{n}{k}\binom{k}{m}$. Another way Billy could invite people is by first choosing which m of his friends he wants to see wear hats. He has $\binom{n}{m}$ choices for this. These m people go to the park, but Billy needs $k-m$ more people chosen from the remaining $n-m$ to attend as well. He can make this choice in $\binom{n-m}{k-m}$ ways, for an altogether count of $\binom{n}{m}\binom{n-m}{k-m}$.
(d) Proof. Billy wants to take some number of his n friends to the park. He could simply go to each friend separately and decide whether to take her (2 choices, repeated n times) giving 2^{n} total choices for groups to invite. Alternatively Billy could arbitrarily decide to invite k people (for some $k=0,1, \ldots, n$) and pick a group of size k in $\binom{n}{k}$ ways. Summing this over all k gives the number of choices Billy has in inviting friends.
(e) Proof. Billy is yet again going to the park and taking some number of his n friends. This time however he wants one attendee to wear a big goofy hat. He could choose the hat wearer first in n ways before picking the rest of the group in 2^{n-1} ways. In total there are $n 2^{n-1}$ choices for Billy. Alternatively, Billy could decide to take k friends for some $k=1, \ldots, n$ in $\binom{n}{k}$ ways before choosing one of those k people to wear the hat. For each k Billy has $k\binom{n}{k}$ choices; summing over k gives the total number of ways to invite friends, one of whom wears a hat.
(f) Proof. Billy has reached an awkward time in his life and keeps two separate groups of friends, one with n people and one with m. He's decided to mix company and take r people to the park for his birthday. He could simply lump the friends together and make one of $\binom{n+m}{r}$ choices to bring people to the park. Alternatively, Billy could arbitrarily decide that k people should attend from his first group of friends, while $r-k$ are chosen
from the second group. Given a value of k, Billy has $\binom{n}{k}\binom{m}{r-k}$ choices; summing over k gives all possibilities for inviting r people.
(g) Proof. Billy has n guy friends and n girl friends. He wants to take n of them to the park, but insists that one of the guys wear a big goofy hat. He could choose the hat wearer in n ways before choosing the rest of the attendees in $\binom{2 n-1}{n-1}$ ways, giving a total count of $n\binom{2 n-1}{n-1}$. Alternatively Billy could decide that k guys should attend for some $k=1, \ldots, n$. After choosing the k guys in $\binom{n}{k}$ ways, he chooses a guy to wear the hat in k ways. To round out his entourage Billy picks k girls to go home (in ($\left.\begin{array}{l}n \\ k\end{array}\right)$ ways), taking the rest with him to the park. Given a value of k, Billy has $k\binom{n}{k}^{2}$ choices; summing over k gives all ways of building the necessary group of friends.

