
Math 8 Homework 7 Solutions

1 Cardinality and Countability

(a) (i) Proof. Given an even positive integer n define f(n) = n − 1. Clearly this function is defined for all
even integers and is injective. Surjectivity follows since every odd positive integer is 1 less than an even
positive integer.

(ii) Proof. Let f : R→ (0, 1) be given by f(x) = 1/2 + (4/π) arctanx. We know that f is injective since f ′

is never 0. Since arctanx takes all values from −π/2 to π/2, our function f is surjective. Thus f is the
required bijection.

(iii) Proof. Define f : (0, 1) → (0, 1] as follows: If n ≥ 2 is an integer, then let f(1/n) = 1/(n − 1). For all
x ∈ (0, 1) which are not reciprocals of integers, let f(x) = x. We’ve defined f on the entire domain,
and it takes values in (0, 1]. The function is surjective because any x which is not a reciprocal of an
integer is obtained from f(x) = x; meanwhile a number of the form 1/n for n ∈ N is obtained via
f(1/(n+ 1)) = 1/n. Injectivity follows similarly.

(b) Proof. This is a corollary of Cantor’s theorem; given any set S the power set P(S) is strictly larger.

(c) Which of the following sets are countable?

(i) Q ∩ {x ∈ R : sinx > 1/2} is a subset of Q, hence countable.

(ii) R−Q is uncountable; if it weren’t we’d have R is countable using R = Q ∪ (R−Q).

(iii) The set of atoms in the observable universe is finite, hence countable. Huge, but finite.

(iv) A circle is uncountable since it’s just (0, 1], all rolled up. Yep, circles are bigger than the universe.

(v) There is a bijection from the set of all binary strings to P(N). Given a such a string define a set
S ∈ P(N) as

S = {n ∈ N : the n–th digit in the string is a 1}

An inverse function exists; given S ∈ P(N) make a string x1, x2, x3, . . . via the rule

xn =

{
1 if n ∈ S
0 if n /∈ S

Hence the aforementioned map is a bijection; since P(N) is uncountable, so is the set of binary strings.

(vi) There are 2k binary strings of length k. If Ak denotes the set of all such strings, the set of finite binary
is the (countable) union of the sets Ak. The set of finite binary strings is hence countable.

(d) Proof. For the base case k = 1 we already know that Z is countable. Now assume that Zk is countable for
some k. Note that |Zk+1| = |Zk × Z| since there exists an obviously bijective map:

(x1, x2, . . . , xn+1) 7→ ((x1, x2, . . . , xn), xn+1).

We know Zk × Z is countable, so Zk+1 is as well. Hence Zk is countable for all positive integers k by
induction.

2 An Introduction to Measure

The length of an interval (a, b) is clear—we define `(a, b) = b− a as expected—but we’d like to generalize length
to more sets. Doing this in general is a bit complicated, so we’ll restrict ourselves to studying zero length. Given
a set S ⊆ R we say S has measure zero if for every ε > 0 there is a countable collection of intervals I1, I2, . . . so
that both S ⊆ I1 ∪ I2 ∪ · · · and

`(I1) + `(I2) + · · · < ε.

(a) Proof. Let x ∈ R and ε > 0 be given. Then (x− ε/2, x+ ε/2) is an interval of length ε that covers {x}.



(b) Proof. Let ε > 0. Since B has measure zero, we can find a countable collection of intervals I1, I2, . . . which
cover B and satisfy

∑
`(In) < ε. Since A ⊆ B, these intervals cover A and satisfy

∑
`(In) < ε, so A has

measure zero.

(c) Proof. Let ε > 0 and find a countable collection of intervals I1, I2, . . . so that A ⊆ ∪nIn and
∑
`(In) < ε/2.

Similarly find a countable collection of intervals J1, J2, . . . so that B ⊆ ∪nJn and
∑
`(Jn) < ε/2.

Together, these two collections of intervals form a single countable collection of intervals with both A ∪B ⊆
(∪nIn) ∪ (∪nJn) and

∑
`(In) +

∑
`(Jn) < ε.

(To be explicit, we use the fact that a union of 2 countable collections is a countable collection)

(d) Proof. The same argument from before works here, with a twist. Let ε > 0. For each Ak find a countable
collection of intervals Ik1 , I

k
2 , . . . that cover Ak and satisfy

∑
n `(I

k
n) < ε/2k. (Note that here superscripts are

being used as secondary indices, not exponents). We’ve approximated each set Ak with smaller and smaller
error as k increases.

Since the union of a countable collection of countable collections is countable (what a mouthful), all together
all the intervals (Ikn) form a single countable collection of intervals which cover ∪nAn. Furthermore, the
lengths satify ∑

n,k

`(Ikn) =
∑
k

∑
n

`(Ikn) <
∑
k

ε

2k
= ε.

Hence ∪nAn has measure zero.

(e) Proof. This is a corollary of the previous problem. Since singletons have measure zero and Q is a countable
union of singletons, Q has measure zero.


