1 Cardinality and Countability

- (a) (i) *Proof.* Given an even positive integer n define f(n) = n 1. Clearly this function is defined for all even integers and is injective. Surjectivity follows since every odd positive integer is 1 less than an even positive integer.
 - (ii) Proof. Let $f : \mathbb{R} \to (0, 1)$ be given by $f(x) = 1/2 + (4/\pi) \arctan x$. We know that f is injective since f' is never 0. Since $\arctan x$ takes all values from $-\pi/2$ to $\pi/2$, our function f is surjective. Thus f is the required bijection.
 - (iii) Proof. Define $f: (0,1) \to (0,1]$ as follows: If $n \ge 2$ is an integer, then let f(1/n) = 1/(n-1). For all $x \in (0,1)$ which are not reciprocals of integers, let f(x) = x. We've defined f on the entire domain, and it takes values in (0,1]. The function is surjective because any x which is not a reciprocal of an integer is obtained from f(x) = x; meanwhile a number of the form 1/n for $n \in \mathbb{N}$ is obtained via f(1/(n+1)) = 1/n. Injectivity follows similarly.

- (b) *Proof.* This is a corollary of Cantor's theorem; given any set S the power set $\mathcal{P}(S)$ is strictly larger.
- (c) Which of the following sets are countable?
 - (i) $\mathbb{Q} \cap \{x \in \mathbb{R} : \sin x > 1/2\}$ is a subset of \mathbb{Q} , hence countable.
 - (ii) $\mathbb{R} \mathbb{Q}$ is uncountable; if it weren't we'd have \mathbb{R} is countable using $\mathbb{R} = \mathbb{Q} \cup (\mathbb{R} \mathbb{Q})$.
 - (iii) The set of atoms in the observable universe is finite, hence countable. Huge, but finite.
 - (iv) A circle is uncountable since it's just (0, 1], all rolled up. Yep, circles are bigger than the universe.
 - (v) There is a bijection from the set of all binary strings to $\mathcal{P}(\mathbb{N})$. Given a such a string define a set $S \in \mathcal{P}(\mathbb{N})$ as

 $S = \{n \in \mathbb{N} : \text{the } n\text{-th digit in the string is a } 1\}$

An inverse function exists; given $S \in \mathcal{P}(\mathbb{N})$ make a string x_1, x_2, x_3, \ldots via the rule

$$x_n = \begin{cases} 1 & \text{if } n \in S \\ 0 & \text{if } n \notin S \end{cases}$$

Hence the aforementioned map is a bijection; since $\mathcal{P}(\mathbb{N})$ is uncountable, so is the set of binary strings.

- (vi) There are 2^k binary strings of length k. If A_k denotes the set of all such strings, the set of finite binary is the (countable) union of the sets A_k . The set of finite binary strings is hence countable.
- (d) *Proof.* For the base case k = 1 we already know that \mathbb{Z} is countable. Now assume that \mathbb{Z}^k is countable for some k. Note that $|\mathbb{Z}^{k+1}| = |\mathbb{Z}^k \times \mathbb{Z}|$ since there exists an obviously bijective map:

$$(x_1, x_2, \dots, x_{n+1}) \mapsto ((x_1, x_2, \dots, x_n), x_{n+1}).$$

We know $\mathbb{Z}^k \times \mathbb{Z}$ is countable, so \mathbb{Z}^{k+1} is as well. Hence \mathbb{Z}^k is countable for all positive integers k by induction.

2 An Introduction to Measure

The length of an interval (a, b) is clear—we define $\ell(a, b) = b - a$ as expected—but we'd like to generalize length to more sets. Doing this in general is a bit complicated, so we'll restrict ourselves to studying zero length. Given a set $S \subseteq \mathbb{R}$ we say S has measure zero if for every $\epsilon > 0$ there is a countable collection of intervals I_1, I_2, \ldots so that both $S \subseteq I_1 \cup I_2 \cup \cdots$ and

$$\ell(I_1) + \ell(I_2) + \dots < \epsilon.$$

(a) *Proof.* Let $x \in \mathbb{R}$ and $\epsilon > 0$ be given. Then $(x - \epsilon/2, x + \epsilon/2)$ is an interval of length ϵ that covers $\{x\}$.

- (b) *Proof.* Let $\epsilon > 0$. Since *B* has measure zero, we can find a countable collection of intervals I_1, I_2, \ldots which cover *B* and satisfy $\sum \ell(I_n) < \epsilon$. Since $A \subseteq B$, these intervals cover *A* and satisfy $\sum \ell(I_n) < \epsilon$, so *A* has measure zero.
- (c) Proof. Let $\epsilon > 0$ and find a countable collection of intervals I_1, I_2, \ldots so that $A \subseteq \bigcup_n I_n$ and $\sum \ell(I_n) < \epsilon/2$. Similarly find a countable collection of intervals J_1, J_2, \ldots so that $B \subseteq \bigcup_n J_n$ and $\sum \ell(J_n) < \epsilon/2$. Together, these two collections of intervals form a single countable collection of intervals with both $A \cup B \subseteq (\bigcup_n I_n) \cup (\bigcup_n J_n)$ and $\sum \ell(I_n) + \sum \ell(J_n) < \epsilon$.

(To be explicit, we use the fact that a union of 2 countable collections is a countable collection) \Box

(d) *Proof.* The same argument from before works here, with a twist. Let $\epsilon > 0$. For each A_k find a countable collection of intervals I_1^k, I_2^k, \ldots that cover A_k and satisfy $\sum_n \ell(I_n^k) < \epsilon/2^k$. (Note that here superscripts are being used as secondary indices, not exponents). We've approximated each set A_k with smaller and smaller error as k increases.

Since the union of a countable collection of countable collections is countable (what a mouthful), all together all the intervals (I_n^k) form a single countable collection of intervals which cover $\cup_n A_n$. Furthermore, the lengths satify

$$\sum_{n,k} \ell(I_n^k) = \sum_k \sum_n \ell(I_n^k) < \sum_k \frac{\epsilon}{2^k} = \epsilon.$$

Hence $\cup_n A_n$ has measure zero.

(e) *Proof.* This is a corollary of the previous problem. Since singletons have measure zero and \mathbb{Q} is a countable union of singletons, \mathbb{Q} has measure zero.