Math 8 Homework 8 Solutions

1. The answer is $\frac{6}{n(n+1)(2 n+1)}$.

Proof. By the Cauchy-Schwarz inequality,

$$
\begin{aligned}
1 & =\left(x_{1}+2 x_{2}+3 x_{3}+\cdots+n x_{n}\right)^{2} \\
& \leq\left(1^{2}+2^{2}+\cdots+n^{2}\right)\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right) \\
& =\left(\frac{n(n+1)(2 n+1)}{6}\right)\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\cdots+x_{n}^{2}\right)
\end{aligned}
$$

If $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is parallel to $(1,2, \ldots, n)$ then equality is achieved. The answer follows.
2. Proof. Since $x, y, z>0$ the roots $\sqrt{x}, \sqrt{y}, \sqrt{z}$ are real numbers. By Cauchy-Schwarz we have

$$
\begin{aligned}
\frac{1}{x}+\frac{4}{y}+\frac{9}{z} & =\left(\sqrt{x}^{2}+\sqrt{y}^{2}+\sqrt{z}^{2}\right)\left(\left(\frac{1}{\sqrt{x}}\right)^{2}+\left(\frac{2}{\sqrt{x}}\right)^{2}+\left(\frac{3}{\sqrt{x}}\right)^{2}\right) \\
& \geq(1+2+3)^{2}=36
\end{aligned}
$$

as desired.
3. Proof. First we note that, from the AM-GM inequality,

$$
\frac{1}{a}+\frac{1}{b}=\frac{a+b}{a b}=\frac{1}{a b} \geq\left(\frac{2}{a+b}\right)^{2}=4
$$

Using Jensen's inequality with $f(x)=x^{2}$ gives us

$$
\begin{aligned}
\left(a+\frac{1}{a}\right)^{2}+\left(b+\frac{1}{b}\right)^{2} & \geq \frac{1}{2}\left(a+\frac{1}{a}+b+\frac{1}{b}\right)^{2} \\
& =\frac{1}{2}\left(1+\frac{1}{a}+\frac{1}{b}\right)^{2} \\
& \geq \frac{25}{2}
\end{aligned}
$$

proving the result.
4. Proof. Suppose to the contrary such a sequence existed. The Cauchy-Schwarz inequality applied to the vectors $\left(a_{k}\right)$ and $\left(a_{k}^{2}\right)$ gives

$$
\left(a_{1}^{3}+a_{2}^{3}+\cdots\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}+\cdots\right)\left(a_{1}^{4}+a_{2}^{4}+\cdots\right)
$$

From our assumption we deduce $9 \leq 8$, a contradiction.
5. Proof. Let's use the Cauchy-Schwarz inequality with the vectors $\left(k a_{k}\right)$ and $(1 / k)$. This gives

$$
\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{2} \leq\left(\sum_{k=1}^{n} \frac{1}{k^{2}}\right)\left(x_{1}^{2}+4 x_{2}^{2}+9 x_{3}^{2}+\cdots+n^{2} x_{n}^{2}\right)
$$

It is well-known that as $n \rightarrow \infty$ the sum $\sum\left(1 / k^{2}\right)$ approaches $\pi^{2} / 6$. Truncating the infinite series after n terms, we bound the finite sum above by this value, giving the result.
Now assume that we replace $\pi^{2} / 6$ with a universal constant C. Taking $x_{k}=1 / k^{2}$ gives

$$
\begin{aligned}
\left(\sum_{k=1}^{n} \frac{1}{k^{2}}\right)^{2} & =\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{2} \\
& \leq C\left(x_{1}^{2}+4 x_{2}^{2}+9 x_{3}^{2}+\cdots+n^{2} x_{n}^{2}\right) \\
& =C \sum_{k=1}^{n} \frac{1}{k^{2}}
\end{aligned}
$$

so that $1+1 / 4+1 / 9+\cdots+1 / n^{2} \leq C$. Taking $n \rightarrow \infty$ gives $\pi^{2} / 6 \leq C$, as desired.
6. Proof. Let $f:(0,1) \rightarrow \mathbb{R}$ be given by $f(x)=x /\left(x^{2}+1\right)$. Then $f^{\prime \prime}(x)=2 x\left(x^{2}-3\right) /\left(x^{2}+1\right)^{3}<0$ since $0<x<1$. Thus f is concave and Jensen's inequality gives

$$
\frac{a}{a^{2}+1}+\frac{b}{b^{2}+1}+\frac{c}{c^{2}+1} \leq 3 f\left(\frac{a+b+c}{3}\right)=3 f\left(\frac{1}{3}\right)=\frac{9}{10}
$$

7. Proof. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be given by $f(x)=x \ln x$. Then $f^{\prime \prime}(x)=1 / x>0$, so f is convex. By Jensen's inequality we have

$$
a \ln a+b \ln b+c \ln c \geq(a+b+c) \ln \left(\frac{a+b+c}{3}\right) \geq(a+b+c) \ln (\sqrt[3]{a b c})
$$

where the last step follows from the AM-GM since the log function is increasing (that is, it preserves inequalities). Finally, rearranging gives

$$
\ln \left(a^{a} b^{b} c^{c}\right) \geq \ln (a b c)^{(a+b+c) / 3}
$$

Again, since \ln is increasing we can cancel it to obtain the result.
8. Proof. Since $A B C$ is an acute triangle, the angles A, B, C are each within $(0, \pi / 2)$ and sum to π. On $(0, \pi / 2)$ the function $\sec ^{2}$ is convex, so Jensen's inequality gives

$$
\sec ^{2} A+\sec ^{2} B+\sec ^{2} C \geq 3 \sec ^{2}\left(\frac{A+B+C}{3}\right)=3 \sec ^{2}\left(\frac{\pi}{3}\right)=12
$$

Similarly, the function $\ln \circ \sin$ is concave, so Jensen gives

$$
\begin{aligned}
\ln (\sin A \sin B \sin C) & =\ln \sin A+\ln \sin B+\ln \sin C \\
& \leq 3 \ln \sin \left(\frac{A+B+C}{3}\right) \\
& =3 \ln \sin \left(\frac{\pi}{3}\right) \\
& =\ln \left(\frac{3 \sqrt{3}}{8}\right)
\end{aligned}
$$

Since \ln is an increasing function, we cancel to deduce the result.
There are many ways to prove Weitzenböck's inequality. One approach is as follows. Starting with a nonnegative sum of squares,

$$
0 \leq(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=2\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)
$$

we obtain $a^{2}+b^{2}+c^{2} \geq a b+b c+c a$. Next recall that the area of a triangle can be computed via

$$
K=\frac{a b}{2} \sin C=\frac{b c}{2} \sin A=\frac{c a}{2} \sin B
$$

so we can write

$$
a^{2}+b^{2}+c^{2} \geq 2 K(\csc A+\csc B+\csc C)
$$

The cosecant function is convex on $(0, \pi)$, so Jensen gives

$$
a^{2}+b^{2}+c^{2} \geq 6 K \csc \left(\frac{A+B+C}{3}\right)=6 K \csc (\pi / 3)=4 K \sqrt{3}
$$

as desired.
9. Proof. Since the logarithm is concave, the general Jensen inequality gives

$$
\ln (a b)=\frac{\ln a^{p}}{p}+\frac{\ln b^{q}}{q} \leq \ln \left(\frac{a^{p}}{p}+\frac{b^{q}}{q}\right)
$$

where we've used $1 / p, 1 / q$ as the weights. The exponential function preserves inequalities, so applying to the above gives Young's inequality.

Now we attack Hölder, beginning with a very powerful trick. Notice that the inequality holds true for $x_{1}, x_{2}, \ldots, x_{n}$ if and only if it holds for $c x_{1}, c x_{2}, \ldots, c x_{n}$ for any constant c (such an inequality is called homogeneous). Choosing c carefully, we can assume $\sum\left|x_{k}\right|^{p}=1$. Similarly, we can renormalize the numbers $\left(y_{k}\right)$ so that $\sum\left|y_{k}\right|^{q}=1$. It now suffices to prove $\sum\left|x_{k} y_{k}\right| \leq 1$. By Young's inequality we have

$$
\left|x_{k} y_{k}\right| \leq \frac{\left|x_{k}\right|^{p}}{p}+\frac{\left|y_{k}\right|^{q}}{q}
$$

for each k. Summing over k gives

$$
\sum_{k=1}^{n}\left|x_{k} y_{k}\right| \leq \frac{1}{p}\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)+\frac{1}{q}\left(\sum_{k=1}^{n}\left|y_{k}\right|^{q}\right)=\frac{1}{p}+\frac{1}{q}=1
$$

proving the result.
10. First Proof. Rearranging the result, we see it's sufficient to prove

$$
\sum_{k=1}^{n} p_{k} \ln \left(\frac{q_{k}}{p_{k}}\right) \leq 0
$$

First we claim that whenever $x>0$, we have $\ln x \leq x-1$. One way to do this is with calculus; define $f:(0, \infty) \rightarrow \mathbb{R}$ with $f(x)=x-1-\ln x$ and notice that $f(1)=0$. When $x>1$ we have $f^{\prime}(x)=1-1 / x>0$, so $f(x)>0$ for all such x. When $0<x<1$ we have $f^{\prime}(x)=1-1 / x<0$, so $f(x)>0$ for those x as well. This proves the claim.
With the claim in hand we have

$$
\sum_{k=1}^{n} p_{k} \ln \left(\frac{q_{k}}{p_{k}}\right) \leq \sum_{k=1}^{n} p_{k}\left(\frac{q_{k}}{p_{k}}-1\right)=\sum_{k=1}^{n}\left(q_{k}-p_{k}\right)=0
$$

and we're done.
Second Proof. We can use Jensen instead. We're already seen that $f(x)=x \ln x$ is convex on $(0, \infty)$. Using $\left(q_{k}\right)$ as weights in Jensen's inequality gives

$$
\sum_{k=1}^{n} p_{k} \ln \left(\frac{p_{k}}{q_{k}}\right)=\sum_{k=1}^{n} q_{k} f\left(\frac{p_{k}}{q_{k}}\right) \geq f\left(\sum_{k=1}^{n} q_{k} \cdot \frac{p_{k}}{q_{k}}\right)=f(1)=0
$$

as desired.

