
Math 8 Homework 8 Solutions

1. The answer is
6

n(n+ 1)(2n+ 1)
.

Proof. By the Cauchy–Schwarz inequality,

1 = (x1 + 2x2 + 3x3 + · · ·+ nxn)2

≤ (12 + 22 + · · ·+ n2)(x21 + x22 + · · ·+ x2n)
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6

)
(x21 + x22 + x23 + · · ·+ x2n),

If (x1, x2, . . . , xn) is parallel to (1, 2, . . . , n) then equality is achieved. The answer follows.

2. Proof. Since x, y, z > 0 the roots
√
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√
z are real numbers. By Cauchy–Schwarz we have
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as desired.

3. Proof. First we note that, from the AM–GM inequality,
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Using Jensen’s inequality with f(x) = x2 gives us(
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proving the result.

4. Proof. Suppose to the contrary such a sequence existed. The Cauchy–Schwarz inequality applied to the
vectors (ak) and (a2k) gives

(a31 + a32 + · · · )2 ≤ (a21 + a22 + · · · )(a41 + a42 + · · · ).

From our assumption we deduce 9 ≤ 8, a contradiction.

5. Proof. Let’s use the Cauchy–Schwarz inequality with the vectors (kak) and (1/k). This gives

(x1 + x2 + · · ·+ xn)2 ≤

(
n∑

k=1

1

k2

)
(x21 + 4x22 + 9x23 + · · ·+ n2x2n).

It is well–known that as n → ∞ the sum
∑

(1/k2) approaches π2/6. Truncating the infinite series after n
terms, we bound the finite sum above by this value, giving the result.

Now assume that we replace π2/6 with a universal constant C. Taking xk = 1/k2 gives(
n∑
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1
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= C
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,

so that 1 + 1/4 + 1/9 + · · ·+ 1/n2 ≤ C. Taking n→∞ gives π2/6 ≤ C, as desired.



6. Proof. Let f : (0, 1) → R be given by f(x) = x/(x2 + 1). Then f ′′(x) = 2x(x2 − 3)/(x2 + 1)3 < 0 since
0 < x < 1. Thus f is concave and Jensen’s inequality gives
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7. Proof. Let f : (0,∞) → R be given by f(x) = x lnx. Then f ′′(x) = 1/x > 0, so f is convex. By Jensen’s
inequality we have

a ln a+ b ln b+ c ln c ≥ (a+ b+ c) ln

(
a+ b+ c

3

)
≥ (a+ b+ c) ln

(
3
√
abc
)
,

where the last step follows from the AM–GM since the log function is increasing (that is, it preserves
inequalities). Finally, rearranging gives

ln(aabbcc) ≥ ln(abc)(a+b+c)/3.

Again, since ln is increasing we can cancel it to obtain the result.

8. Proof. Since ABC is an acute triangle, the angles A,B,C are each within (0, π/2) and sum to π. On
(0, π/2) the function sec2 is convex, so Jensen’s inequality gives

sec2A+ sec2B + sec2 C ≥ 3 sec2
(
A+B + C

3

)
= 3 sec2

(π
3

)
= 12.

Similarly, the function ln ◦ sin is concave, so Jensen gives

ln(sinA sinB sinC) = ln sinA+ ln sinB + ln sinC

≤ 3 ln sin
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.

Since ln is an increasing function, we cancel to deduce the result.

There are many ways to prove Weitzenböck’s inequality. One approach is as follows. Starting with a
nonnegative sum of squares,

0 ≤ (a− b)2 + (b− c)2 + (c− a)2 = 2(a2 + b2 + c2 − ab− bc− ca),

we obtain a2 + b2 + c2 ≥ ab+ bc+ ca. Next recall that the area of a triangle can be computed via
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2
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so we can write
a2 + b2 + c2 ≥ 2K (cscA+ cscB + cscC) .

The cosecant function is convex on (0, π), so Jensen gives

a2 + b2 + c2 ≥ 6K csc

(
A+B + C

3

)
= 6K csc(π/3) = 4K

√
3,

as desired.

9. Proof. Since the logarithm is concave, the general Jensen inequality gives
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ln ap

p
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ln bq

q
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)
,

where we’ve used 1/p, 1/q as the weights. The exponential function preserves inequalities, so applying to
the above gives Young’s inequality.



Now we attack Hölder, beginning with a very powerful trick. Notice that the inequality holds true for
x1, x2, . . . , xn if and only if it holds for cx1, cx2, . . . , cxn for any constant c (such an inequality is called
homogeneous). Choosing c carefully, we can assume

∑
|xk|p = 1. Similarly, we can renormalize the numbers

(yk) so that
∑
|yk|q = 1. It now suffices to prove

∑
|xkyk| ≤ 1. By Young’s inequality we have
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for each k. Summing over k gives
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proving the result.

10. First Proof. Rearranging the result, we see it’s sufficient to prove

n∑
k=1

pk ln

(
qk
pk

)
≤ 0.

First we claim that whenever x > 0, we have lnx ≤ x − 1. One way to do this is with calculus; define
f : (0,∞)→ R with f(x) = x−1− lnx and notice that f(1) = 0. When x > 1 we have f ′(x) = 1−1/x > 0,
so f(x) > 0 for all such x. When 0 < x < 1 we have f ′(x) = 1− 1/x < 0, so f(x) > 0 for those x as well.
This proves the claim.

With the claim in hand we have
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and we’re done.

Second Proof. We can use Jensen instead. We’re already seen that f(x) = x lnx is convex on (0,∞). Using
(qk) as weights in Jensen’s inequality gives
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as desired.


