
Math 8 Homework 9 Solutions

1 Arithmetic and Algebra of Complex Numbers

(a) (a) (1 + i)100 = (
√

2eiπ/4)100 = 250.

(b) (1 + eiθ)n = einθ/2(2n cosn θ/2).

(c) exp(eiθ) = exp(cos θ + i sin θ) = ecos θei sin θ = ecos θ(cos(sin θ) + i sin(sin θ))

(b) (i) The set of all points 4 units away from 1 is a circle of radius 4 centered at 1.

(ii) The set of points equidistant from i and 4 is the perpendicular bisector of the line segment joining i
and 4.

(iii) Given z ∈ C, note that |z| is distance to 0 while Re(z + 2) is the distance to the vertical line y = −2.
The set for which these are equal is a parabola.

(c) (i) z6 − 2z3 + 2 = 0 gives (z3 − 1)2 = −1, so that z3 = 1 ± i. Converting to polar, z3 =
√

2e±iπ/4 and
hence z = 21/6 exp(2ikπ/3± iπ/12), where k ∈ {0, 1, 2}.

(ii) (z+1)5 = z5 becomes (1+1/z)5 = 1 upon division. Hence z = 1/(exp(2ikπ/5)−1) with k ∈ {0, 1, 2, 3, 4}.
We exclude k = 0 since it leads to division by 0.

(iii) ez = 1 + i becomes ez =
√

2eiπ/4 when we rewrite in polar. The real part of z = x + iy must satisfy
ex =

√
2, so that x = ln(2)/2. The imaginary part must satisfy y = π/4 + 2πk for some k ∈ Z. Thus

z = ln
√

2 + iπ/4 + 2kiπ with k ∈ Z.

(iv) z4 = 5(z − 1)(z2 − z + 1) becomes z4 − 5z3 + 10z2 − 10z + 5 = 0 after rearranging. This is suspiciously
familiar, so multiplying by z and subtracting 1 gives

(z − 1)5 = −1.

That is, z = 1 + e(2k+1)iπ/5 with k ∈ {0, 1, 2, 3, 4}. However, k = 0 leads to z = 0 which doesn’t satisfy
the original equation. So there are only 4 solutions (as can be expected from a quartic equation).

(d) Proof. Rewrite cos(nθ) = Re(einθ) and evaluate the geometric series:

∞∑
n=0

cos(nθ)

2n
= Re

∞∑
n=0

(
eiθ

2

)n
= Re

1

1− eiθ/2
.

The rest is algebra.

∞∑
n=0

cos(nθ)

2n
= Re

1

1− eiθ/2
= Re

2

2− eiθ
= Re

2(2− e−iθ)
(2− eiθ)(2− e−iθ)

= Re
4− 2e−iθ

5− 2(eiθ + e−iθ)
.

The denominator contains an expression for 2 cos θ:

∞∑
n=0

cos(nθ)

2n
= Re

4− 2 cos θ + 2i sin θ

5− 4 cos θ
=

4− 2 cos θ

5− 4 cos θ
,

and we’re done.

(e) Proof. TYPO ALERT: I should’ve written nonconstant in the problem statement. Let a ∈ C be given. Then
p(z)− a is a nonconstant polynomial, and by the fundamental theorem of algebra, there exists z ∈ C so that
p(z)− a = 0. Hence p(z) = a and p is surjective.

(f) Proof. Define the function

f(z) =
z − p
1− pz

.

Clearly f(p) = 0. Furthermore, the denominator of f never vanishes; for z ∈ D we have |pz| < 1. Finally,
note that as |z| → 1 we have z → 1/z so that

|f(z)| =
∣∣∣∣ z − a1− za

∣∣∣∣→ ∣∣∣∣ z − a1− a/z

∣∣∣∣ = |z| = 1,

as desired.



2 Problem Solving with Complex Numbers

(a) Proof. Let ω = exp(2iπ/n). The product of the lengths we want is

P =

n−1∏
k=1

|1− ωk|.

Let f(z) = 1 + z + z2 + · · · + zn−1, whose roots are ω, ω2, . . . , ωn−1. Then g(z) = f(1 − z) is a polynomial
with roots 1 − ω, 1 − ω2, . . . , 1 − ωn−1. The product of the roots of a polynomial g with degree n − 1 is
(−1)n−1g(0), so we have

P =

∣∣∣∣∣
n−1∏
k=1

(1− ωk)

∣∣∣∣∣ = |(−1)n−1g(0)| = |f(1)| = n.

Now we want to compute

S =

n−1∑
k=1

|1− ωk|2 =

n−1∑
k=1

(1− ωk)(1− ωn−k) =

n−1∑
k=1

(1− ωk − ωn−k + ωn).

The sum ω + ω2 + · · ·+ ωn−1 = −1. Using this and the fact that ωn = 1,

S = 2(n− 1)− (−1)− (−1) = 2n,

and we’re done.

(b) Proof. Let a, b,m, n be positive integers. Then we have

(a2 + b2)(m2 + n2) = |a+ bi|2|m+ ni|2 = |(am− bn) + i(an+ bm)|2 = (am− bn)2 + (an+ bm)2.

Hence the product of two sums of 2 squares is itself a sum of 2 squares.

(c) Proof. Set z 7→ ωz to get
f(ωz) + f(ω2z) = exp(ωz). (1)

In this equation again set z 7→ ωz to find

f(ω2z) + f(ω3z) = exp(ω2z).

The second term above simplifies since ω3 = 1, so we find

f(ω2z) + f(z) = exp(ω2z). (2)

If we take the given identity
f(z) + f(ωz) = exp(z),

subtracting (1), adding (2), and dividing by 3 gives

f(z) =
exp(z)− exp(ωz) + exp(ω2z)

3
.

Proving uniqueness of f is immediate. Starting from the identity from f we derived exactly what f must be,
so there can be no other f .

(d) Proof. We begin with a geometric series. When z ∈ D the series

za + za+d + za+2d + · · · = za(1 + zd + (zd)2 + · · · ) =
za

1− zd

is a convergent geometric series.

Now suppose that we find integers ak, dk so that each dk is distinct and

z

1− z
=

za1

1− zd1
+

za2

1− zd2
+ · · ·+ zan

1− zdn



for all z ∈ D. Without loss of generality let d1 be the largest such dk. Multiplying gives

z(1− zd1)

1− z
= za1 + (1− zd1)

(
za2

1− zd2
+ · · ·+ zan

1− zdn

)
(3)

Now we have to keep z ∈ D, but we can take the limit z → e2iπ/d1 while z stays within the disk. Assuming
d1 6= 1 we deduce

0 = e2ia1π/d1 ,

which is impossible. Hence the largest dk is 1 and as all dk were distinct, there are no others. That is, n = 1.
Returning to equation (3) we see that z = za1 , so a1 = 1. This proves the second result.

Finally, assume we can decompose N into a disjoint collection of arithemtic progressions:

N = {a1, a1 + d1, a1 + 2d1, . . .} ∪ · · · ∪ {an, an + dn, an + 2dn, . . .},

with each dk distinct. We can use this partition to write

z + z2 + z3 + · · · = (za1 + za1+d1 + · · · ) + · · ·+ (zan + zan+dn + · · · )

for all z ∈ D. Summing these series gives

z

1− z
=

za1

1− zd1
+

za2

1− zd2
+ · · ·+ zan

1− zdn
.

By the above reasoning, n = a1 = d1 = 1. That is, our partition of N must have been the trivial one.


