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Math 8 Homework 9 Solutions

Arithmetic and Algebra of Complex Numbers

(a) (1 +Z)100 ( m/4)100 — 950
(b) (1+e“9) = 0/2(2" cos™ 6/2).
) ex

(c) exp(e?) = exp(cos @ + isinf) = e %eisin0 = 030 (cog(sin §) + i sin(sin 6))

(i
(ii

) The set of all points 4 units away from 1 is a circle of radius 4 centered at 1.
) The set of points equidistant from ¢ and 4 is the perpendicular bisector of the line segment joining 4
and 4.

(iii) Given z € C, note that |z| is distance to 0 while Re(z + 2) is the distance to the vertical line y = —2.
The set for which these are equal is a parabola.

(i) 28 —22% +2 = 0 gives (2* — 1)2 = —1, so that 2> = 1 4. Converting to polar, 23 = v/2e*""/4 and
hence z = 21/0 exp(2ik7/3 + im/12), where k € {0,1,2}.

(i) (2+1)® = 2° becomes (1+1/2)® = 1 upon division. Hence z = 1/(exp(2ikn/5)—1) with k € {0,1,2,3,4}.
We exclude k = 0 since it leads to division by 0.

(iii) e* = 1+ ¢ becomes e* = V/2€'™/* when we rewrite in polar. The real part of z = = + iy must satisfy
® = /2, so that 2 = In(2)/2. The imaginary part must satisfy y = 7/4 + 27k for some k € Z. Thus
2z =1In?2 +in/4 + 2kin with k € Z.

(iv) 2% =5(2 —1)(2%2 — 2+ 1) becomes 2* — 52% + 1022 — 102 + 5 = 0 after rearranging. This is suspiciously
familiar, so multiplying by z and subtracting 1 gives

(z—1)° = —1.

That is, z = 1 + e@*+tD7/5 with k € {0,1,2,3,4}. However, k = 0 leads to z = 0 which doesn’t satisfy
the original equation. So there are only 4 solutions (as can be expected from a quartic equation).

Proof. Rewrite cos(nf) = Re(e™?) and evaluate the geometric series:

Zcosn@ RZ( ) T{wﬂ

n=0

The rest is algebra.

= Re —Re—— =R ; __R : __
on T—cf/2 " 2—el  C(2_ef)(2—e®) 5 —2(eh +eib)

Z COb(ne) 1 2 2(2 — €_i0) - 4 — 26_i6
n=0

The denominator contains an expression for 2 cos 6:

i cos(nb) Re4—2cosﬁ+2isin0 _ 4—2cos?
2n 5 —4cosf - 5 —4cosh’

n=0
and we’re done. O

Proof. TYPO ALERT: I should’ve written nonconstant in the problem statement. Let a € C be given. Then
p(2z) — a is a nonconstant polynomial, and by the fundamental theorem of algebra, there exists z € C so that
p(2) —a = 0. Hence p(z) = a and p is surjective. O

Proof. Define the function

1) = 1=

Clearly f(p) = 0. Furthermore, the denominator of f never vanishes; for z € D we have |pz| < 1. Finally,
note that as |z| — 1 we have Z — 1/z so that

zZ—a zZ—aQa

1—a/z

as desired. 0

1f(2)] = =lzl=1,

1—Za



2 Problem Solving with Complex Numbers

(a) Proof. Let w = exp(2im/n). The product of the lengths we want is

n—1
P=]]h-w".
k=1

Let f(2) =1+ 2+ 2% +---+ 2" !, whose roots are w,w?,...,w" 1. Then g(z) = f(1 — z) is a polynomial
with roots 1 — w,1 — w?,...,1 —w™'. The product of the roots of a polynomial g with degree n — 1 is
(—=1)""1g(0), so we have

n—1
P=|[Ta-uH|=I(=0"""g0) = |f(1)| =n
k=1
Now we want to compute
n—1 n—1 n—1
S = Z 11— w*? = Z(l —WF) (1 =R = Z(l — WP —wE ).
k=1 k=1 k=1

The sum w + w? + -+ - +w" ™! = —1. Using this and the fact that w™ =1,
S=2(n—1)—(-1) — (—1) = 2n,
and we're done. O
(b) Proof. Let a,b,m,n be positive integers. Then we have
(a® + b*)(m? +n?) = |a + bi]*|m + ni|® = |(am — bn) + i(an + bm)|* = (am — bn)? + (an + bm)?.
Hence the product of two sums of 2 squares is itself a sum of 2 squares. O

(¢) Proof. Set z — wz to get
flwz) + f(w?z) = exp(wz). (1)
In this equation again set z — wz to find
f(W?2) + f(w?2) = exp(w?z).

The second term above simplifies since w? = 1, so we find

f(w?2) + f(2) = exp(w?z). (2)
If we take the given identity
f(2) + fwz) = exp(z),
subtracting (1), adding (2), and dividing by 3 gives
exp(z) — exp(wz) + exp(w?z)

/() = : .

Proving uniqueness of f is immediate. Starting from the identity from f we derived exactly what f must be,
so there can be no other f. O

(d) Proof. We begin with a geometric series. When z € I the series

Za

Za+za+d+za+2d+”.:Za(1+zd+(zd)2+”.):1_72d

is a convergent geometric series.
Now suppose that we find integers ax, d; so that each d is distinct and

ay az An

z oz Lz
11—z 1—2zd = 1—zd

2
1 — zdn




for all z € D. Without loss of generality let dy be the largest such di. Multiplying gives

2(1 — z%)

— a1 _ d1 i i
1=, 24+ (1—-2 )(1 +- ) (3)

— zd2 1 — zdn
Now we have to keep z € D, but we can take the limit z — €%7/%1 while z stays within the disk. Assuming
di # 1 we deduce

_ 21;0.171’ d1
0O=e / ,

which is impossible. Hence the largest di, is 1 and as all dj were distinct, there are no others. That is, n = 1.
Returning to equation (3) we see that z = 2%, so a; = 1. This proves the second result.

Finally, assume we can decompose N into a disjoint collection of arithemtic progressions:
N ={ay,a1 +dy,a1 +2dy,...} U---U{apn, an + dp, an + 2d,, ...},
with each dj distinct. We can use this partition to write
24224+ 4 = (2™ 4 poatdy _|_...)_|_..._|_(zan+Zan+dn_|_...)

for all z € D. Summing these series gives

z z% 292 zon
= + I A —
11—z 1—z8 1—z% 1— zdn

By the above reasoning, n = a; = dy = 1. That is, our partition of N must have been the trivial one. O



