Math 8 Homework 9 Solutions

1 Arithmetic and Algebra of Complex Numbers

(a) (a) $(1+i)^{100}=\left(\sqrt{2} e^{i \pi / 4}\right)^{100}=2^{50}$.
(b) $\left(1+e^{i \theta}\right)^{n}=e^{i n \theta / 2}\left(2^{n} \cos ^{n} \theta / 2\right)$.
(c) $\exp \left(e^{i \theta}\right)=\exp (\cos \theta+i \sin \theta)=e^{\cos \theta} e^{i \sin \theta}=e^{\cos \theta}(\cos (\sin \theta)+i \sin (\sin \theta))$
(b) (i) The set of all points 4 units away from 1 is a circle of radius 4 centered at 1 .
(ii) The set of points equidistant from i and 4 is the perpendicular bisector of the line segment joining i and 4.
(iii) Given $z \in \mathbb{C}$, note that $|z|$ is distance to 0 while $\operatorname{Re}(z+2)$ is the distance to the vertical line $y=-2$. The set for which these are equal is a parabola.
(c) (i) $z^{6}-2 z^{3}+2=0$ gives $\left(z^{3}-1\right)^{2}=-1$, so that $z^{3}=1 \pm i$. Converting to polar, $z^{3}=\sqrt{2} e^{ \pm i \pi / 4}$ and hence $z=2^{1 / 6} \exp (2 i k \pi / 3 \pm i \pi / 12)$, where $k \in\{0,1,2\}$.
(ii) $(z+1)^{5}=z^{5}$ becomes $(1+1 / z)^{5}=1$ upon division. Hence $z=1 /(\exp (2 i k \pi / 5)-1)$ with $k \in\{0,1,2,3,4\}$. We exclude $k=0$ since it leads to division by 0 .
(iii) $e^{z}=1+i$ becomes $e^{z}=\sqrt{2} e^{i \pi / 4}$ when we rewrite in polar. The real part of $z=x+i y$ must satisfy $e^{x}=\sqrt{2}$, so that $x=\ln (2) / 2$. The imaginary part must satisfy $y=\pi / 4+2 \pi k$ for some $k \in \mathbb{Z}$. Thus $z=\ln \sqrt{2}+i \pi / 4+2 k i \pi$ with $k \in \mathbb{Z}$.
(iv) $z^{4}=5(z-1)\left(z^{2}-z+1\right)$ becomes $z^{4}-5 z^{3}+10 z^{2}-10 z+5=0$ after rearranging. This is suspiciously familiar, so multiplying by z and subtracting 1 gives

$$
(z-1)^{5}=-1
$$

That is, $z=1+e^{(2 k+1) i \pi / 5}$ with $k \in\{0,1,2,3,4\}$. However, $k=0$ leads to $z=0$ which doesn't satisfy the original equation. So there are only 4 solutions (as can be expected from a quartic equation).
(d) Proof. Rewrite $\cos (n \theta)=\operatorname{Re}\left(e^{i n \theta}\right)$ and evaluate the geometric series:

$$
\sum_{n=0}^{\infty} \frac{\cos (n \theta)}{2^{n}}=\operatorname{Re} \sum_{n=0}^{\infty}\left(\frac{e^{i \theta}}{2}\right)^{n}=\operatorname{Re} \frac{1}{1-e^{i \theta} / 2}
$$

The rest is algebra.

$$
\sum_{n=0}^{\infty} \frac{\cos (n \theta)}{2^{n}}=\operatorname{Re} \frac{1}{1-e^{i \theta} / 2}=\operatorname{Re} \frac{2}{2-e^{i \theta}}=\operatorname{Re} \frac{2\left(2-e^{-i \theta}\right)}{\left(2-e^{i \theta}\right)\left(2-e^{-i \theta}\right)}=\operatorname{Re} \frac{4-2 e^{-i \theta}}{5-2\left(e^{i \theta}+e^{-i \theta}\right)}
$$

The denominator contains an expression for $2 \cos \theta$:

$$
\sum_{n=0}^{\infty} \frac{\cos (n \theta)}{2^{n}}=\operatorname{Re} \frac{4-2 \cos \theta+2 i \sin \theta}{5-4 \cos \theta}=\frac{4-2 \cos \theta}{5-4 \cos \theta}
$$

and we're done.
(e) Proof. TYPO ALERT: I should've written nonconstant in the problem statement. Let $a \in \mathbb{C}$ be given. Then $p(z)-a$ is a nonconstant polynomial, and by the fundamental theorem of algebra, there exists $z \in \mathbb{C}$ so that $p(z)-a=0$. Hence $p(z)=a$ and p is surjective.
(f) Proof. Define the function

$$
f(z)=\frac{z-p}{1-\bar{p} z}
$$

Clearly $f(p)=0$. Furthermore, the denominator of f never vanishes; for $z \in \mathbb{D}$ we have $|\bar{p} z|<1$. Finally, note that as $|z| \rightarrow 1$ we have $\bar{z} \rightarrow 1 / z$ so that

$$
|f(z)|=\left|\frac{z-a}{1-\bar{z} a}\right| \rightarrow\left|\frac{z-a}{1-a / z}\right|=|z|=1,
$$

as desired.

2 Problem Solving with Complex Numbers

(a) Proof. Let $\omega=\exp (2 i \pi / n)$. The product of the lengths we want is

$$
P=\prod_{k=1}^{n-1}\left|1-\omega^{k}\right|
$$

Let $f(z)=1+z+z^{2}+\cdots+z^{n-1}$, whose roots are $\omega, \omega^{2}, \ldots, \omega^{n-1}$. Then $g(z)=f(1-z)$ is a polynomial with roots $1-\omega, 1-\omega^{2}, \ldots, 1-\omega^{n-1}$. The product of the roots of a polynomial g with degree $n-1$ is $(-1)^{n-1} g(0)$, so we have

$$
P=\left|\prod_{k=1}^{n-1}\left(1-\omega^{k}\right)\right|=\left|(-1)^{n-1} g(0)\right|=|f(1)|=n
$$

Now we want to compute

$$
S=\sum_{k=1}^{n-1}\left|1-\omega^{k}\right|^{2}=\sum_{k=1}^{n-1}\left(1-\omega^{k}\right)\left(1-\omega^{n-k}\right)=\sum_{k=1}^{n-1}\left(1-\omega^{k}-\omega^{n-k}+\omega^{n}\right)
$$

The sum $\omega+\omega^{2}+\cdots+\omega^{n-1}=-1$. Using this and the fact that $\omega^{n}=1$,

$$
S=2(n-1)-(-1)-(-1)=2 n
$$

and we're done.
(b) Proof. Let a, b, m, n be positive integers. Then we have

$$
\left(a^{2}+b^{2}\right)\left(m^{2}+n^{2}\right)=|a+b i|^{2}|m+n i|^{2}=|(a m-b n)+i(a n+b m)|^{2}=(a m-b n)^{2}+(a n+b m)^{2} .
$$

Hence the product of two sums of 2 squares is itself a sum of 2 squares.
(c) Proof. Set $z \mapsto \omega z$ to get

$$
\begin{equation*}
f(\omega z)+f\left(\omega^{2} z\right)=\exp (\omega z) \tag{1}
\end{equation*}
$$

In this equation again set $z \mapsto \omega z$ to find

$$
f\left(\omega^{2} z\right)+f\left(\omega^{3} z\right)=\exp \left(\omega^{2} z\right)
$$

The second term above simplifies since $\omega^{3}=1$, so we find

$$
\begin{equation*}
f\left(\omega^{2} z\right)+f(z)=\exp \left(\omega^{2} z\right) \tag{2}
\end{equation*}
$$

If we take the given identity

$$
f(z)+f(\omega z)=\exp (z)
$$

subtracting (1), adding (2), and dividing by 3 gives

$$
f(z)=\frac{\exp (z)-\exp (\omega z)+\exp \left(\omega^{2} z\right)}{3}
$$

Proving uniqueness of f is immediate. Starting from the identity from f we derived exactly what f must be, so there can be no other f.
(d) Proof. We begin with a geometric series. When $z \in \mathbb{D}$ the series

$$
z^{a}+z^{a+d}+z^{a+2 d}+\cdots=z^{a}\left(1+z^{d}+\left(z^{d}\right)^{2}+\cdots\right)=\frac{z^{a}}{1-z^{d}}
$$

is a convergent geometric series.
Now suppose that we find integers a_{k}, d_{k} so that each d_{k} is distinct and

$$
\frac{z}{1-z}=\frac{z^{a_{1}}}{1-z^{d_{1}}}+\frac{z^{a_{2}}}{1-z^{d_{2}}}+\cdots+\frac{z^{a_{n}}}{1-z^{d_{n}}}
$$

for all $z \in \mathbb{D}$. Without loss of generality let d_{1} be the largest such d_{k}. Multiplying gives

$$
\begin{equation*}
\frac{z\left(1-z^{d_{1}}\right)}{1-z}=z^{a_{1}}+\left(1-z^{d_{1}}\right)\left(\frac{z^{a_{2}}}{1-z^{d_{2}}}+\cdots+\frac{z^{a_{n}}}{1-z^{d_{n}}}\right) \tag{3}
\end{equation*}
$$

Now we have to keep $z \in \mathbb{D}$, but we can take the limit $z \rightarrow e^{2 i \pi / d_{1}}$ while z stays within the disk. Assuming $d_{1} \neq 1$ we deduce

$$
0=e^{2 i a_{1} \pi / d_{1}}
$$

which is impossible. Hence the largest d_{k} is 1 and as all d_{k} were distinct, there are no others. That is, $n=1$. Returning to equation (3) we see that $z=z^{a_{1}}$, so $a_{1}=1$. This proves the second result.
Finally, assume we can decompose \mathbb{N} into a disjoint collection of arithemtic progressions:

$$
\mathbb{N}=\left\{a_{1}, a_{1}+d_{1}, a_{1}+2 d_{1}, \ldots\right\} \cup \cdots \cup\left\{a_{n}, a_{n}+d_{n}, a_{n}+2 d_{n}, \ldots\right\}
$$

with each d_{k} distinct. We can use this partition to write

$$
z+z^{2}+z^{3}+\cdots=\left(z^{a_{1}}+z^{a_{1}+d_{1}}+\cdots\right)+\cdots+\left(z^{a_{n}}+z^{a_{n}+d_{n}}+\cdots\right)
$$

for all $z \in \mathbb{D}$. Summing these series gives

$$
\frac{z}{1-z}=\frac{z^{a_{1}}}{1-z^{d_{1}}}+\frac{z^{a_{2}}}{1-z^{d_{2}}}+\cdots+\frac{z^{a_{n}}}{1-z^{d_{n}}}
$$

By the above reasoning, $n=a_{1}=d_{1}=1$. That is, our partition of \mathbb{N} must have been the trivial one.

