
A Primer on Inequalities

Introduction: Basic Inequalities

When working in the set of real numbers, we have a law of trichotomy. Given x, y ∈ R exactly one of these is
true: x < y, y < x, or x = y. This (almost) defining characteristic of the real line means that inequalities are a
valuable tool in calculus and calculus’ big brother, real analysis. At our level it’s hard to give authentic examples
of why inequalities are important, but here’s a couple of examples.

• Perhaps we want to know whether or not the infinite sum
∑
ak is finite, but ak is very hard to understand.

If we could find a simple series
∑
bk so that either

∑
ak ≤

∑
bk or conversely, our problem could be

circumvented.

• The definite integral on [0, 1] can be viewed as a function from the set of continuous functions C[0, 1] to
the real numbers:

f 7→
∫ 1

0

f(x) dx.

Is this operation a continuous one? That is, if two functions f, g are ‘close together’ are their integrals
‘close’ as well? In functional analysis we find that for any linear operation T on a function space, T is
continuous if we can find an inequality of the form

‖Tf‖ ≤ C‖f‖

that holds for all f in the domain. Continuous operations are extremely important in the study of PDE,
quantum mechanics, dynamical systems, and even image reconstruction.

Clearly these applications are beyond the scope of this course. How goal is to work with inequalities in an
authentic way; that is, we don’t want to solve inequalities (Find all reals x so that 3x+ 2 > 5), but rather prove
inequality statements that are generally true. To illuminate this point, consider the simplest inequality: for all
real x,

x2 ≥ 0.

This statement is always true, and we can use it in clever ways to prove more general facts.

Example. For all a, b, c ∈ R prove that

a2 + b2 + c2 ≥ ab+ bc+ ca.

Let a, b, c ∈ R. We begin with a simple observation, albeit one that might seem unmotivated:

(a− b)2 + (b− c)2 + (c− a)2 ≥ 0.

Expanding the binomials gives the result.

Note well that we always start our proofs with a statement we know to be true! We cannot begin our proof
of the previous result by writing “Since

a2 + b2 + c2 ≥ ab+ bc+ ca

we can rearrange. . . ” Let’s see one more example before moving to more interesting problems.

Example. Given positive numbers a, b prove that

a+ b

2
≥
√
ab.

In this problem we’ve restricted ourselves to positive numbers. The advantage of this is that
√
a and

√
b are real

numbers as well (you might wonder why a complex number such as
√
−1 would bother us—it turns out that

complex numbers cannot be ordered in an algebraically–meaningful way, so we must avoid them for now).
Now for the proof. Let a, b ∈ R be positive and note that

(
√
a−
√
b)2 ≥ 0.

Expanding the binomial gives the result.

This inequality we’ve just proved is far more important than one might think. We’ll continue this line of
thought in the next section.
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Arithmetic and Geometric Means

Given positive numbers a1, a2, . . . , an we can form the arithmetic mean

A =
a1 + a2 + · · ·+ an

n

or the geometric mean
G = n

√
a1a2 · · · an.

Perhaps a surprising fact is that A ≥ G no matter what. We’ll examine two major proofs of this fact. The first is
elementary—meaning that it doesn’t use high–powered mathematical tools, not that it’s easy. The second we’ll
see in a later section below, once we have those tools. We call this theorem the arithmetic mean–geometric mean
inequality, or AM–GM for short.

Theorem (AM–GM). Given positive real numbers a1, a2, . . . , an we have that

a1 + a2 + · · ·+ an
n

≥ n
√
a1a2 · · · an.

Proof. The case n = 1 is trivial, so assume n ≥ 2. The following proof is due to Cauchy, and it essentially is an
induction argument on n. That said, it’s very unusual in its structure. The base case n = 2 was discussed in
an example in the previous section. Next we prove that whenever the result holds for n, it holds for 2n as well.
That is, we’ll first prove the result for powers of 2: n = 2, 4, 8, 16, . . .. Assume we know the result holds for some
n. Now consider 2n positive real numbers a1, . . . , an and b1, . . . , bn. We use the induction hypothesis and the
base case to find

(a1 + · · ·+ an) + (b1 + · · ·+ bn) ≥ n(a1 · · · an)1/n + n(b1 · · · bn)1/n

≥ 2n
√

(a1 · · · an)1/n(b1 · · · bn)1/n

= 2n 2n
√
a1 · · · anb1 · · · bn,

which is what we wanted. We’ve finished our first induction, and we know the theorem to be true for infinitely
many n. Next we prove that whenever the result is true for n, it’s also true for n − 1. That is, we’ll use a
backwards induction; this will catch all those values of n between powers of 2, finishing the proof.

Let n ≥ 4 and assume the result holds for n. Consider the n− 1 positive numbers a1, a2, . . . , an−1. Define an
to be the geometric mean of the other n− 1 numbers. Then we have

a1 + a2 + · · ·+ an−1 + an ≥ n n
√
a1a2 · · · an−1an = nan.

To see why the last equality holds, consider this anecdote: A student has a 70% going into a final exam. He
scores a 70% on the final, so his final average is 70%. That is, adding the geometric mean to the list did not
change the geometric mean (manipulating exponents proves this fact). Finally, algebra gives us

a1 + a2 + · · ·+ an−1 ≥ nan − an,

so the result follows upon division by n− 1. Whew!

It’s time to get our hands dirty and prove some inequalities using our new tool.

Example. Let θ ∈ (0, π/2). Then

tan θ + cot θ = tan θ +
1

tan θ
≥ 2

√
tan θ · 1

tan θ
= 2.

If θ = π/4 equality occurs; we’ve minimized a function without calculus, hooray.

Example. Let a, b, c ∈ R be positive. Prove that

ab

c
+
bc

a
+
ca

b
≥ a+ b+ c.

We need to use the AM–GM cleverly here. Note that

ab

c
+
bc

a
≥ 2

√
ab

c
· bc
a

= 2b.

Similarly bc/a+ ca/b ≥ 2c and ca/b+ ab/c ≥ 2a. Adding these 3 inequalities gives the result.
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Example. Prove (
n

1

)(
n

2

)
· · ·
(

n

n− 1

)
≤
(

2n − 2

n− 1

)n−1
when n ≥ 2. This follows from the AM–GM once we remember that

n∑
k=0

(
n

k

)
= 2n

and that
(
n
0

)
=
(
n
n

)
= 1.

Example. Given a positive integer n, let τ(n) denote the number of positive integers dividing n and let σ(n)
denote the sum of these positive divisors. We claim that for any n ≥ 1

σ(n)

τ(n)
≥
√
n.

Denote the divisors of n as 1 = d1 < d2 < . . . < dk = n. Note that the arithmetic mean of these numbers is
exactly σ(n)/τ(n). By the AM–GM we have

σ(n)

τ(n)
≥ k
√
d1d2 · · · dk.

Now for a trick. Notice that dj · dk−j = n for each j; for example the divisors of 12 are 1, 2, 3, 4, 6, 12 and sure
enough 1 · 12 = 2 · 6 = 3 · 4 = 12. Thus we can write(

σ(n)

τ(n)

)2

≥ k
√
d1d2 · · · dk · k

√
dkdk−1 · · · d1 =

k
√
nk = n,

which proves the result.

The Cauchy–Schwarz Inequality

It’s time to meet the most useful inequality in mathematics. Commonly called the Cauchy–Schwarz inequality,
this statement was actually proven in different forms by Augustin-Louis Cauchy and Hermann Schwarz. In fact,
the mathematician Viktor Bunyakovsky (a student of Cauchy) proved a third version; to this day many Russian
mathematicians refer to the inequality as that of Bunyakovsky. We’ll use the earliest version, due to Cauchy.

Theorem (Cauchy–Schwarz Inequality, Cauchy’s version, 1821). Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)
be vectors in Rn. It follows that

(a1b1 + a2b2 + · · ·+ anbn)2 ≤ (a21 + a22 + · · ·+ a2n)(b21 + b22 + · · ·+ b2n). (CS)

In vector notation (which is often less helpful) we have a·b ≤ ‖a‖ · ‖b‖.

For completeness and cultural awareness, we present the other 2 forms of the inequality, which we won’t use.

Theorem (Cauchy–Schwarz, Bunyakovsky’s version, 1859). Let f, g : X → C be measurable functions on a
measure space X. (In lay terms, f and g are functions for which integrals can be defined, and X is a space we
can integrate over, such as an interval). Then we have∫

X

|fg| ≤
(∫

X

|f |2
)1/2(∫

X

|g|2
)1/2

.

Note that these are definite integrals, written in the style of measure theory.

Theorem (Cauchy–Schwarz, Schwarz’ version, 1888). Let V be an inner product space (that is, a vector space
with a complex–valued operation like the dot product, where we denote u · v instead by 〈u, v〉). Then for any
vectors u, v ∈ V we have

|〈u, v〉| ≤ ‖u‖ · ‖v‖.

Without further ado, let’s prove Cauchy’s inequality. The idea is simple—when a real quadratic function is
always nonnegative, its discriminant is also.
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Proof. Let a, b ∈ Rn be arbitrary. Given any real number t ∈ R note that

‖a+ tb‖2 ≥ 0.

Recall that the dot product satisfies ‖u‖2 = u·u for any vector u. Thus

(a+ tb)·(a+ tb) ≥ 0,

which expands to give
(b·b)t2 + 2(a·b)t+ (a·a) ≥ 0.

This quadratic polynomial in t is always nonnegative, so the discriminant must be nonnegative:

(2a·b)2 − 4(b·b)(a·a) ≥ 0,

which rearranges into the result.

Cauchy’s inequality is powerful. Let’s solve a number of problems with it.

Example. Let a1, a2, . . . , an be positive reals. Prove that

(a1 + a2 + · · ·+ an)(a−11 + a−12 + · · ·+ a−1n ) ≥ n2.

Since each ak is positive, the square root
√
ak is real. Using Cauchy’s inequality on the vectors (

√
ak) and

(1/
√
ak) gives

(
√
a1

2
+ · · ·+

√
an

2
)(1/
√
a1

2
+ · · ·+ 1/

√
an

2
) ≥

(
√
a1 ·

1
√
a1

+ · · ·+
√
an ·

1
√
an

)2

,

which gives the result.

Example. Let (ak) be an infinite sequence of real numbers. Prove

∞∑
k=1

akx
k ≤ 1√

1− x2

( ∞∑
k=1

a2k

)1/2

whenever 0 ≤ x < 1. This follows immediately from Cauchy’s inequality if we recall that

1 + x2 + x4 + x6 + · · · = 1

1− x2

for all x ∈ (−1, 1).

Example. Given positive real numbers a, b, c which sum to 6, prove that(
a+

1

b

)2

+

(
b+

1

c

)2

+

(
c+

1

a

)2

≥ 75

4
.

Using Cauchy with the vectors (1, 1, 1) and (a+ 1/b, b+ 1/c, c+ 1/a) gives

(12 + 12 + 12)

[(
a+

1

b

)2

+

(
b+

1

c

)2

+

(
c+

1

a

)2
]
≥
(
a+ b+ c+

1

a
+

1

b
+

1

c

)2

.

Notice that a+ b+ c = 6 and 1/a+ 1/b+ 1/c ≥ 3/2 by a previous example. Thus

3

[(
a+

1

b

)2

+

(
b+

1

c

)2

+

(
c+

1

a

)2
]
≥
(

6 +
3

2

)2

,

which is equivalent to the given inequality.
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Example. Given a regular n–gon with side length 1 pick an arbitrary point P in the interior. Draw line segments
perpendicular to each of the n sides and let x1, x2, . . . , xn be their lengths. Prove that

1

x1
+ · · ·+ 1

xn
> 2π.

Note that we need to prove strict inequality (equality not allowed). Our proof should indicate why this occurs.
If we draw line segments from P to each vertex of the polygon, we obtain a subdivision into n triangles; the
k–th triangle has height xk and base 1. Thus the area of the k–th triangle is xk/2, causing the total area of the
polygon to be (x1 + · · · + xn)/2. On the other hand, a regular polygon with n sides and side length 1 has area
(n/4) cot(n/π). Combining these facts gives us

x1 + x2 + · · ·+ xn =
n

2
cot
(π
n

)
. (?)

Finally, recall an earlier example wherein we proved

(x1 + · · ·+ xn)

(
1

x1
+ · · ·+ 1

xn

)
≥ n2.

Using equation (?) in this inequality gives us

1

x1
+ · · ·+ 1

xn
≥ 2n tan

(π
n

)
> 2n

(π
n

)
= 2π,

where we have used the fact that tanx > x for 0 < x < π/2.

Convexity and Jensen’s Inequality

So far every inequality we’ve studied has followed from the nonnegativity of a square. Now we turn to a different
‘source’ of inequality, convexity.

Definition. A function f : (a, b)→ R is called convex iff whenever x, y ∈ (a, b) and 0 < t < 1 we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

For t = 1/2, this reduces to the memorable form

f

(
x+ y

2

)
≤ f(x) + f(y)

2
.

When −f is convex, we call f concave.

Graphically, the graph of a convex function lies underneath its secant line (see figure 1). Before we proceed,
we make a few remarks about convex functions.

• Convex functions are always continuous. A proof of this is beyond the scope of this course, but it’s nice to
know that convex functions are reasonably well-behaved.

• Convex functions need not be differentiable. Just consider f(x) = |x| at x = 0.

• If a function f : (a, b)→ R is twice differentiable everywhere in its domain, then f is convex if and only if
f ′′(x) ≥ 0 throughout (a, b). This is convexity as most people remember it from calculus. We won’t prove
this either; nonetheless, feel free to use this fact to prove functions are convex!

• The statement

f

(
x+ y

2

)
≤ f(x) + f(y)

2

is not enough to guarantee that f is convex, unless we know a priori that f is continuous. Again, this is
beyond our scope.

Convexity is a very powerful tool. The following inequality, due to Johann Jensen, shows that convexity applies
to averages of more than 2 terms. First we state a simple version, which is typically all we need.
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Figure 1: The graph of a convex function lies below the line segment joining its endpoints.

Theorem (Jensen’s Inequality, simple version, 1906). Let f : (a, b)→ R be convex. Given x1, x2, . . . , xn ∈ (a, b)
we have that

f

(
x1 + x2 + · · ·+ xn

n

)
≤ f(x1) + f(x2) + · · ·+ f(xn)

n
.

If f is concave, the inequality is reversed.

Theorem (Jensen’s Inequality, general version, 1906). Let f : (a, b)→ R be convex. Given x1, x2, . . . , xn ∈ (a, b)
and positive numbers t1, . . . , tn which sum to 1, we have that

f (t1x1 + t2x2 + · · ·+ tnxn) ≤ t1f(x1) + t2f(x2) + · · ·+ tnf(xn).

The simple version follows when t1 = t2 = · · · = tn = 1/n. Again, a concave function simply reverses the
inequality.

Of course, there is a more general setting in which Jensen’s inequality is used. For cultural awareness (and
nothing more), we’ll state it here.

Theorem (Jensen’s inequality for integration on probability spaces). Let f : R → R be convex and X be a
measure space with total measure (e.g., length, area, etc.) equal to 1. Given an integrable function g : X → R,
we have that

f

(∫
X

g

)
≤
∫
X

f ◦ g.

We’ll prove the general Jensen inequality for sums, which implies the simple one.

Proof. We induct on n, the number of terms in the sum. When n = 2 Jensen’s inequality is simply the definition
of convexity. Now assume that whenever y1, . . . , yn ∈ (a, b) and λ1, . . . , λn ∈ (0, 1) are such that

∑
λk = 1, we

have
f(λ1y1 + · · ·+ λnyn) ≤ λ1f(y1) + · · ·+ λnf(yn).

That is, assume the result for some integer n ≥ 2. Given x1, . . . , xn, xn+1 ∈ (a, b) and positive reals tk ∈ (0, 1)
which sum to 1, we use clever algebra to write

f

(
n+1∑
k=1

tkxk

)
= f

(
tn+1xn+1 + (1− tn+1)

n∑
k=1

tk
1− tn+1

xk

)

≤ tn+1f(xn+1) + (1− tn+1)f

(
n∑
k=1

tk
1− tn+1

xk

)
.
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Notice that
∑n
k=1 tk/(1− tn+1) = 1, so the induction hypothesis gives us

f

(
n+1∑
k=1

tkxk

)
≤ tn+1f(xn+1) + (1− tn+1)

n∑
k=1

tk
1− tn+1

f(xk) =

n+1∑
k=1

tkf(xk),

and the result holds for all n by induction.

Convexity is a great tool for proving inequalities about functions you understand well, such as the tangent,
logarithm and squaring functions. Let’s look at some examples.

Example. Given a triangle ABC prove that

sinA+ sinB + sinC ≤ 3
√

3

2
.

Since ABC is a triangle, A+B+C = π and each angle lies within (0, π). Furthermore, sin is a concave function
on (0, π). By Jensen’s inequality we have

sinA+ sinB + sinC

3
≤ sin

(
A+B + C

3

)
= sin(π/3) =

√
3

2
,

which rearranges into the result.

Example. Suppose the positive numbers a, b, c satisfy a+ b+ c = abc. Prove that

1√
1 + a2

+
1√

1 + b2
+

1√
1 + c2

≤ 3

2
. (??)

Inspired by trigonometry, we might try writing a = tanA, b = tanB, and c = tanC with A,B,C ∈ (0, π/2).
What relationship holds between the angles if we make this substitution? Exercising my omnipotence, expanding
tan(A+B + C) gives us

tan(A+B + C) =
tanA+ tanB + tanC − tanA tanB tanC

1− tanA tanB − tanB tanC − tanC tanA
= 0,

which implies that A + B + C = π. That is, ABC is a triangle. I’m being a bit disingenuous here; I’m not
clever, just showing a well–known fact about triangles. Anyway, the inequality (??) that we want to prove can
be written simply as

cosA+ cosB + cosC ≤ 3

2
.

On the interval (0, π/2) cosine is concave, so Jensen’s inequality gives the result:

cosA+ cosB + cosC ≤ 3 cos

(
A+B + C

3

)
= 3 cos

(π
3

)
=

3

2
,

as desired.

Example. Let’s give a more conceptual proof of the AM–GM using convexity. Given positive reals a1, . . . , an let’s
prove once again that

a1 + · · ·+ an
n

≥ n
√
a1 · · · an.

This time we’ll use positivity in a different way; rewrite the n numbers as ak = exk with each xk ∈ R. The
exponential function x 7→ ex is convex, so Jensen’s inequality gives

1

n

n∑
k=1

exk ≥ exp

(
x1 + · · ·+ xn

n

)
= [ex1ex2 · · · exn ]

1/n
.

Rewriting this in terms of the numbers ak gives the result. Much easier than forward–backward induction!
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More Examples and Applications

In this section we attack various problems and discuss uses of inequalities in science. Try to decide a fruitful
method for each before reading the solution.

Example. Let x1, . . . , xn be positive reals summing to 1. Prove that(
1 +

1

x1

)
· · ·
(

1 +
1

xn

)
≥ (n+ 1)n.

A product of n terms might invoke feelings of an AM–GM proof, but the AM–GM shows that products are smaller
than other things, not larger. We need a different approach. Taking a logarithm produces a different–looking
kind of problem.

Consider the function f : (0,∞) → R given by f(x) = ln(1 + 1/x). Then f ′′(x) = 1/x2 − 1/(x+ 1)2 > 0, so
f is convex. By Jensen’s inequality we have

ln

n∏
k=1

(
1 +

1

xk

)
=

n∑
k=1

ln

(
1 +

1

xk

)
≥ n ln

(
1 +

n

x1 + · · ·+ xn

)
= ln [(n+ 1)n] .

Exponentiation preserves inequalities, so applying exp cancels the logarithm to obtain the result.

Example. Let a1, . . . , an be positive reals with sum s. Prove both

n∑
k=1

ak
s− ak

≥ n

n− 1
and

n∑
k=1

s− ak
ak

≥ n(n− 1).

There are many ways to prove each of these statements. We’ll use Jensen for the first and Cauchy for the second.
Define f : (0, s)→ R via f(x) = x/(s− x). Then f ′′(x) = 2s/(s− x)3 > 0, so f is convex. Jensen gives

n∑
k=1

f(ak) ≥ nf(s/n) =
s

s− s/n
=

n

n− 1
.

For the other inequality note that
∑
ak/s = 1 and

n∑
k=1

s

ak
=

(
n∑
k=1

ak
s

)(
n∑
k=1

s

ak

)
≥ n2.

Therefore
n∑
k=1

s− ak
ak

=

n∑
k=1

(
s

ak
− 1

)
=

n∑
k=1

(
s

ak

)
− n ≥ n2 − n = n(n− 1).

Example. Let a > b > 0 and consider the ellipse in R2 with equation x2/a2 + y2/b2 = 1. While the area of the
ellipse is easy to compute (simply πab), the perimeter is notoriously difficult. The perimeter ` is given by

` = 4a

∫ π/2

0

√
1− ε2 sin2 t dt,

where ε is the eccentricity, defined as

ε =

√
a2 − b2
b2

.

Recall that as ε→ 0, the ellipse becomes a circle. This arc length integral is impossible to evaluate analytically
(that is, there is no technique to find the answer without numerical approximation). We can use an inequality
to estimate it, however. Using the Cauchy-Schwarz inequality for integrals, we can write

` = 4a

∫ π/2

0

1 ·
√

1− ε2 sin2 t dt ≤ 4a

(∫ π/2

0

12 dt

)1/2(∫ π/2

0

(1− ε2 sin2 t) dt

)1/2

= 2aπ

√
1− ε2

2
.

This upper bound is very close to the true value ` when ε is near 0. Specifically, the error is O(ε4) as ε→ 0.

8



Example. Let’s take a moment to talk economics. Consider a real–valued function U that measures your economic
happiness—we call this function utility. In reality, everything is basically a function of everything else, so I can’t
write a concise U : ?→ R. Instead, let’s focus on wealth. Alice is going to make some money in the stock market
this year, or so she hopes. She doesn’t know how much wealth w she’ll make, so she wonders about her expected
happiness. Which is larger: the expected happiness she derives from her earnings E[U(w)], or the happiness
she’d derive from her expected earnings U(E[w])? Despite how it sounds, these are in fact different!

Now, I’m assuming a few things about Alice. As Alice earns more money, a value of a little bit more money
(marginal utility) decreases. The utility function is concave! Expected value is computed with an integral against
a probability measure, so thanks to Jensen’s inequality we find

U(E[w]) = U

(∫
X

w

)
≥
∫
X

U ◦ w = E[U(w)],

so we conclude Alice would rather be guaranteed some money than have variance around that value. In other
words, Alice would rather have $100 than a 50–50 chance of either $50 or $150.

Example. Let’s talk some physics. It is fairly well–known that quantum mechanics claims the workings of the
universe are inherently random. Measuring a property of a particle will give a random result with some probability
distribution. After our measurement, we have changed the particle (collapsed the wavefunction). How do we
know that when we measure the position of an electron and find it, that it wasn’t just “there all along”? Einstein
himself posed this sort of question in the early days of modern physics—he didn’t like where this stuff was leading.
People who disagreed with the postulates of quantum mechanics proposed “hidden variable” theories. In short,
physics isn’t random, it’s just determined by some processes we don’t see. How could one ever refute such a
statement? Or prove it?

The answer, surprisingly enough, is with inequalities. No, really. In 1964 John Bell published a paper
addressing the issue. He proved a collection of inequalities that any local hidden variable theory must satisfy.
For example, the first one states that (under some hypotheses) for 3 different probabilistic events a, b, c we have

1 + C(b, c) ≥ |C(a, b)− C(a, c)|,

where C(·, ·) denotes the correlation between events. It becomes a simple matter of testing in the lab to find a
situation that breaks Bell’s inequalities. Sure enough, electron spin can be shown to disobey Bell’s theorem to
within an accuracy that guarantees the inequalities are wrong (this was done in 1981). Yep, physics is weird.

We conclude with 2 tangentially related applications. One easy, one less so.

Example. A marching band stands in rectangular formation. The band director notices that each row has a
tallest person; among those tall people Alice is the shortest. The director also notices each column has a shortest
person. Among these short people, Bob is the tallest. Decide who is taller, Alice or Bob, assuming no two people
have the same height.

The idea here is simple. If Alice is in Bob’s row or column, Alice is clearly the taller one. Otherwise some
person, say Carl, is in the same row as Alice and column as Bob. Alice is taller than Carl, but Bob is shorter
than Carl. So again Alice is the tallest one.

Theorem (Isoperimetric Inequality). Suppose a smooth curve C in the plane has length 2π and bounds a region
with area A. Then A ≤ π with equality if and only if C is a circle.

We’ll need a lemma before we begin. This result is sometimes called a Poincaré inequality.

Lemma. Let f : [0, 2π]→ R be smooth (that is, infinitely differentiable). Then∫ 2π

0

|f(t)− a|2 dt ≤
∫ 2π

0

|f ′(t)|2 dt,

where a is the average value of f :

a =
1

2π

∫ 2π

0

f(t) dt.

Proof. Write the complex–valued Fourier series of f :

f(t) ∼
∞∑

n=−∞
cne

int
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so that a = c0 and ∫ 2π

0

|f(t)− a|2 dt =
∑
n 6=0

|cn|2,

∫ 2π

0

|f ′(t)|2 dt =
∑
n 6=0

n2|cn|2.

Putting these together gives ∫ 2π

0

(
|f ′(t)|2 − |f(t)− a|2

)
dt =

∑
n 6=0

(n2 − 1)|cn|2 ≥ 0.

Equality holds if and only if an = 0 for all n 6= −1, 0, 1; that is, f(t) = a+ b cos t for some constants a, b.

Proof of Theorem. This is an important result with a rich history. The problem is subtle because we cannot
assume in advance that there is a ‘best’ curve—that is, one which bounds the most area. In only using smooth
curves (those with no spikes or cusps) we’re restricting ourselves slightly, but the problem can be reduced to this
case. There’s a proof using Fourier series, but we’ll instead use Green’s theorem and some basic inequalities.

Let the curve C be parametrized by via γ(s) = (x(s), y(s)) with 0 ≤ s ≤ 2π. We can do this in a way so that
γ is unit–speed; that is, ‖γ′(s)‖ = 1 for all s. In lay terms, we are traversing the curve a constant speed of 1.
First we note that ∫ 2π

0

y′(s) ds = y(2π)− y(0) = 0,

since the end of the curve is the beginning. Meanwhile define the average value of x(s)

1

2π

∫ 2π

0

x(s) ds = a.

Using Green’s theorem, we can produce a well–known area formula for the region insde C:

A =

∫
C

x dy =

∫ 2π

0

x(s)y′(s) ds =

∫ 2π

0

(x− a)y′(s) ds+ a

∫ 2π

0

y′(s) ds =

∫ 2π

0

(x− a)y′(s) ds.

Next use the AM–GM to write

(x− a)y′ ≤ (x− a)2 + y′2

2
.

This gives us

A ≤ 1

2

∫ 2π

0

[
(x(s)− a)2 + y′(s)2

]
ds ≤ 1

2

∫ 2π

0

(x′(s)2 + y′(s)2) ds,

where the last step follows from the lemma. Finally, we’ve assumed that ‖γ′(s)‖2 = 1, so that

A ≤ 1

2

∫ 2π

0

1 ds = π.

From our proof of the lemma, equality happens if and only if x(s) = a + b cos s for some constants a, b. Since
x′2 + y′2 = 1, this forces y(s) = c+ b sin s for some constant c. The curve parametrized by γ(s) = (a+ b cos s, c+
b sin s) is a circle.
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