Math 8, Summer 2012 Practice Exam 2

Name \qquad

Short Ans.	
1	
2	
3	
Total	

Perm No. \qquad
Directions:

1. Each problem is graded out of 4 points.
2. Each short answer question is worth 1 point.
3. You're only allowed a writing instrument and your wits.
4. Proofs should be clean, to the point, and written in proper English sentences.

Short Answer

1. Given $n \in \mathbb{N}$ evaluate $\sum_{k=0}^{n} \frac{1}{(n-k)!(n+k)!}$.
2. Billy claims to have an a data compression algorithm that takes any 100-bit string of 0 s and 1s and reduce its size to 50 bits. Explain to Billy why he must be destroying information; that is, there must be two different strings that get compressed into the same result.
3. In how many ways can we divide 6 students into 2 nonempty groups? The groups are functionally identical, except for the people in them.
4. A relation \simeq is called injective if whenever x, y, z in the underlying set satisfy $x \simeq y$ and $z \simeq y$, it must follow that $x=z$. Give an example of such a relation.
5. Precisely define what it means for a relation \sim on a set S to be antisymmetric.
6. Given an equivalence relation R on a set S, precisely define S / R.
7. Give a combinatorial defintion of $\binom{n}{k}$ (no formulas)
8. How many two-element subsets $\{a, b\}$ of $\{1,2, \ldots, 50\}$ satisfy $|a-b|=5$?

Problems

1. Let S be a nonempty set and $\operatorname{Aut}(S)$ denote the set of all bijective functions $S \rightarrow S$. Given functions $f, g \in \operatorname{Aut}(S)$ define $f \sim g$ if and only if there is $h \in \operatorname{Aut}(S)$ so that $f \circ h=h \circ g$. Prove that \sim is an equivalence relation on $\operatorname{Aut}(S)$.
Remark: In group theory, when $f \sim g$ we say the two functions are 'conjugate'.
2. Let $F(n, k)$ denote the number of surjective functions $\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, k\}$. There is no simple formula for computing $F(n, k)$ in general, but we have a recurrence relation:

$$
F(n+1, k)=k \cdot F(n, k-1)+k \cdot F(n, k) .
$$

First figure out $F(n, n)$ and $F(2,1)$ directly. Then use the recurrence relation and induction to prove for all integers $n \geq 2$,

$$
F(n, n-1)=\binom{n}{2} \cdot(n-1)!
$$

Remark: As an extra challenge, use combinatorial reasoning to prove $F(n, k)=k!S(n, k)$, where S denotes the Stirling number of the second kind.
3. Let n be a positive integer. Given an integer $k \leq n$ define the $D_{n}(k)$ to be the number of ways to permute n students so that exactly k objects end up in their starting positions. Use combinatorial reasoning to prove that

$$
\sum_{k=0}^{n} k \cdot D_{n}(k)=n!
$$

