
Math 8, Summer 2012
Practice Final
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Directions:

1. Each problem is graded out of 4 points.

2. Each short answer question is worth 1 point.

3. You’re only allowed a writing instrument and your wits.

4. Proofs should be clean, to the point, and written in proper English sentences.



Short Answer

1. Precisely define what it means for a set A to be uncountable.

2. Precisely define what it means for a function f : R→ R to be convex.

3. Geometrically describe the set of all complex z so that z4 Re(z) = z4 Im(z).

4. Let A1, A2, A3, . . . be a collection of countable sets. Which of these need not be countable?

(a) A1 − A2

(b)
∞⋃
n=1

An

(c) A1 × A2 × A3 × · · ·

(d)
∞⋃
n=1

(A1 × A2 × · · · × An)

(e) None of the above



5. How many distinct z ∈ C satisfy ez = 16?

(a) 0

(b) 1

(c) 2

(d) 4

(e) Infinitely many

6. Find the minimum value of (sin x secx tanx) + (csc x cosx cotx) for 0 < x < π/2.

7. What is the real part of (1 + i
√

3)2012?

8. Does there exist a set S so that

|N| < |S| < |P(N)|

(a) Yes, R works

(b) Yes, Q works

(c) Yes, but the set is nearly indescribable

(d) No

(e) How the hell should I know!?



Problems

1. A real number α is called algebraic if there exists a polynomial p(x) with integer coeffi-
cients so that p(α) = 0. A real number that is not algebraic is called transcendental. For
centuries mathematicians were unsure whether transcendental numbers exist. Prove that
transcendental numbers exist by following this outline (due to G. Cantor):

(a) Given n ∈ N let An denote the set of all algebraic numbers that satisfy a polynomial
equation

a0 + a1x+ a2x
2 + · · ·+ anx

n = 0.

Let Bnm denote those elements of An that satisfy a polynomial equation as above, but
with each |ak| ≤ m. Prove that each Bnm is finite.

(b) Prove that each An is countable.

(c) Let A denote the set of all algebraic numbers. Prove that A is countable.

(d) Let T denote the set of all transcendental numbers. Prove that T is nonempty.



2. Let a1, a2, a3, . . . be an infinite sequence of real numbers, not all zero. Prove Carlson’s
second inequality:

(a1 + a2 + a3 + · · · )4 ≤ π2(a21 + a22 + a23 + · · · )(a21 + 4a22 + 9a23 + · · · ),

with equality if and only if the right side is infinite. Proceed by following this outline (due
to G.H. Hardy).

(a) First address trivial cases:

•
∑

k k
2a2k =∞

•
∑

k a
2
k =∞

(b) Let α, β > 0 be unspecifed parameters to be chosen later. Use Cauchy-Schwarz on the

vectors (1/
√
α + βk2) and (ak

√
α + βk2).

(c) Prove that
∞∑
k=1

1

α + βk2
<

∫ ∞
0

dx

α + βx2
.

(d) Evaluate the aforementioned integral in terms of α and β.

(e) Finally, choose

α =

(
∞∑
k=1

k2a2k

)1/2( ∞∑
k=1

a2k

)−1/2
and β = 1/α. Simplify to deduce the result.



3. Given z, ζ ∈ C such that |z| < 1 and |ζ| = 1, define the Poisson kernel (of the disk) as

P (z, ζ) =
1− |z|2

2π|z − ζ|2
.

Prove whenever |z| < 1 that ∫ 2π

0

P (z, eit) dt = 1

by following this outline (in this version due to T. Ransford).

(a) Let 0 ≤ r < 1 and θ, t ∈ [0, 2π). Take the series

∞∑
n=−∞

r|n|ein(θ−t)

and rewrite it as two infinite series—one from n = 0 to n = ∞ and one from n = −1
to n = −∞.

(b) Sum the two (now geometric) series you found to show that

P (reiθ, eit) =
1

2π

∞∑
n=−∞

r|n|ein(θ−t).

(c) Swap sum and integral (assume this is valid—it is, but we don’t have the background
to prove it) to finish the proof.

Remark: This shows the Poisson kernel acts as a probability ditribution on the unit circle—a
fact that allows a stochastic interpretation of harmonic function theory.


